首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The main objective was to produce 3D printable hydrogels based on GelMA and hydroxyapatite doped with cerium ions with potential application in bone regeneration. The first part of the study regards the substitution of Ca2+ ions from hydroxyapatite structure with cerium ions (Ca10-xCex(PO4)6(OH)2, xCe = 0.1, 0.3, 0.5). The second part followed the selection of the optimal concentration of HAp doped, which will ensure GelMA-based scaffolds with good biocompatibility, viability and cell proliferation. The third part aimed to select the optimal concentrations of GelMA for the 3D printing process (20%, 30% and 35%). In vitro biological assessment presented the highest level of cell viability and proliferation potency of GelMA-HC5 composites, along with a low cytotoxic potential, highlighting the beneficial effects of cerium on cell growth, also supported by Live/Dead results. According to the 3D printing experiments, the 30% GelMA enriched with HC5 was able to generate 3D scaffolds with high structural integrity and homogeneity, showing the highest suitability for the 3D printing process. The osteogenic differentiation experiments confirmed the ability of 30% GelMA-3% HC5 scaffold to support and efficiently maintain the osteogenesis process. Based on the results, 30% GelMA-3% HC5 3D printed scaffolds could be considered as biomaterials with suitable characteristics for application in bone tissue engineering.  相似文献   

2.
The biocompatible and degradable macroporous bioceramic scaffolds with high mechanical properties and interconnected porous structures play an important role in hard tissue regeneration and bone tissue engineering applications. In this study, the improvement of mechanical properties of macroporous β-tricalcium phosphate [β-Ca3(PO4)2, β-TCP] bioceramic scaffolds with uniform macropore size and interconnected pores were fabricated by impregnation of the synthesized β-TCP nano-powder slurry into polymeric frames. The microstructures, mechanical properties and in vitro degradation of the fabricated samples were investigated. For a comparison, β-TCP scaffolds were also fabricated from commercial micro-size powders under the same conditions. The resultant scaffolds showed porosities ∼65% with uniform macropore size ranging from 400 to 550 μm and interconnected pore size ∼100 μm. The compressive strength of the samples fabricated from nano-size powders reached 10.87 MPa, which was almost twice as high as those fabricated from commercial micro-size powders, and was comparable to the high-end value (2–10 MPa) of human cancellous bone. Furthermore, the degradation of the β-TCP bioceramics fabricated from nano-size powders was apparently lower than those fabricated from commercial micro-size powders, suggesting the possible control of the degradation of the scaffolds by regulating initial powder size. Regarding the excellent mechanical properties and porous structures, the obtained macroporous β-TCP bioceramic scaffolds can be used in hard tissue regeneration and bone tissue engineering applications.  相似文献   

3.
This paper focuses on investigating the technical potential for fabricating porous ceramic bioscaffolds for the repair of osseous defects from trauma or disease by inverse replication of three–dimensional (3–D) printed polymer template. Si3N4 ceramics with pore structure comprising orderly–interconnected big pore channels and well–distributed small pores are successfully fabricated by a technique combining 3–D printing, vacuum suction filtration and oxidation sintering. The Si3N4 ceramics fabricated from the Si3N4 powder with addition of 10?wt% talcum by sintering at 1250?°C for 2?h have little deformation, uniform microstructure, low linear shrinkage of 4.1%, high open porosity of 58.2%, relatively high compression strength of 6.4?MPa, orderly–interconnected big pore channels and well–distributed small pores, which are promising bioscaffold in the field of bone tissue engineering.  相似文献   

4.
The influence of surface topography on cellular behaviour and its importance for the development of three-dimensional scaffolds for bone tissue engineering are a topic of growing interest. To date, the introduction of topographical patterns into the surface of 3D porous ceramic scaffolds has proven difficult, due partly to the brittle nature of ceramic materials as well as the currently available fabrication technologies. In this study, a grooved pattern was introduced into the surface of 3D multilayer porous ceramic scaffolds by the chemical etching technique. The patterned scaffolds were characterised by X-Ray Diffraction (XRD), Scanning Electron Microscopy with Energy Dispersive X-Ray Spectroscopy (SEM-EDX) and Digital Holographic Microscopy (DHM). Their bioactivity was also evaluated in vitro by immersion in simulated body fluid (SBF) for 12 h, 1, 7, 14 and 21 days. Scaffolds were constituted mainly with a mixture of the calcium pyrophosphate (Ca2O7P2) and β-tricalcium phosphate (Ca?(PO?)?) phases. The pyrophosphate on the external layer was dissolved as a result of the etching process, leaving grooves on the surface. Ridges and grooves were nano-/micrometric, with dimensions of around 900 nm–1.5 μm in width and 200 nm–300 nm in depth. Moreover, the mechanical properties and bioactive capacity of the patterned scaffolds were not affected by chemical etching, making them suitable to be used in bone tissue engineering.  相似文献   

5.
《Ceramics International》2017,43(15):12018-12025
Nanoscale forsterite (Mg2SiO4) has recently been proposed for bone tissue engineering application. Due to the special role of strontium (Sr) in bone remodeling, the stimulation of bone formation and reduction in bone resorption, the modification of forsterite by doping with Sr is expected to increase bioactivity and biocompatibility. The aim of this study was to incorporate Sr (0, 0.05, 0.1, 0.2 and 0.4 at%) into forsterite using sol-gel method and to investigate the effect of Sr content on the phase composition, in vitro apatite-formation ability as well as osteoblast-like MG63 viability. Results demonstrated that while forsterite was the main phase of all Sr-doped forsterite nanopowders, Sr2MgSi2O7, MgO and MgSiO3 were present as the minor phases depending on the Sr content. Moreover, the presence of Sr atom influenced the crystallite and particle size as well as lattice parameters of the forsterite powder, while did not significantly change the morphology of particles. Noticeably, the incorporation of Sr up to 0.2 at% enhanced the average crystallite size (from 25.3 nm to 45.9 nm) and particle size (31.0 ± 3.9 nm to 62.9 ± 11.8 nm) of pure forsterite powder. Additionally, according to the Rietveld refinement, the incorporation of Sr up to 0.2 at% increased the lattice parameters of forsterite more than 0.1%, depending on the Sr content. In vitro bioactivity assessment in simulated body fluid (SBF) revealed while all Sr-forsterite samples possessed greater bioactivity than pure forsterite nanopowder, the incorporation of 0.1 at% Sr revealed improved bioactivity compared to other Sr-forsterite samples. However, according to MTT assay, while all forsterite-based ceramics significantly improved the cell proliferation compared to tissue culture plate (TCP) and forsterite nanopowder, Sr-forsterite nanopowders consisting of 0.05–0.1 at% Sr revealed a considerably promoted cell proliferation. In conclusion, Sr-forsterite nanopowder could be a promising candidate for bone tissue engineering and reconstruction of bone defects such as osteoporosis.  相似文献   

6.
Gelatin has excellent biological properties, but its poor physical properties are a major obstacle to its use as a biomaterial ink. These disadvantages not only worsen the printability of gelatin biomaterial ink, but also reduce the dimensional stability of its 3D scaffolds and limit its application in the tissue engineering field. Herein, biodegradable suture fibers were added into a gelatin biomaterial ink to improve the printability, mechanical strength, and dimensional stability of the 3D printed scaffolds. The suture fiber reinforced gelatin 3D scaffolds were fabricated using the thermo-responsive properties of gelatin under optimized 3D printing conditions (−10 °C cryogenic plate, 40–80 kPa pneumatic pressure, and 9 mm/s printing speed), and were crosslinked using EDC/NHS to maintain their 3D structures. Scanning electron microscopy images revealed that the morphologies of the 3D printed scaffolds maintained their 3D structure after crosslinking. The addition of 0.5% (w/v) of suture fibers increased the printing accuracy of the 3D printed scaffolds to 97%. The suture fibers also increased the mechanical strength of the 3D printed scaffolds by up to 6-fold, and the degradation rate could be controlled by the suture fiber content. In in vitro cell studies, DNA assay results showed that human dermal fibroblasts’ proliferation rate of a 3D printed scaffold containing 0.5% suture fiber was 10% higher than that of a 3D printed scaffold without suture fibers after 14 days of culture. Interestingly, the supplement of suture fibers into gelatin biomaterial ink was able to minimize the cell-mediated contraction of the cell cultured 3D scaffolds over the cell culture period. These results show that advanced biomaterial inks can be developed by supplementing biodegradable fibers to improve the poor physical properties of natural polymer-based biomaterial inks.  相似文献   

7.
Polylactic acid–glycolic acid (PLGA) has been widely used in bone tissue engineering due to its favorable biocompatibility and adjustable biodegradation. 3D printing technology can prepare scaffolds with rich structure and function, and is one of the best methods to obtain scaffolds for bone tissue repair. This review systematically summarizes the research progress of 3D-printed, PLGA-based scaffolds. The properties of the modified components of scaffolds are introduced in detail. The influence of structure and printing method change in printing process is analyzed. The advantages and disadvantages of their applications are illustrated by several examples. Finally, we briefly discuss the limitations and future development direction of current 3D-printed, PLGA-based materials for bone tissue repair.  相似文献   

8.
Polyhydroxyalkanoates are biopolyesters whose biocompatibility, biodegradability, environmental sustainability, processing versatility, and mechanical properties make them unique scaffolding polymer candidates for tissue engineering. The development of innovative biomaterials suitable for advanced Additive Manufacturing (AM) offers new opportunities for the fabrication of customizable tissue engineering scaffolds. In particular, the blending of polymers represents a useful strategy to develop AM scaffolding materials tailored to bone tissue engineering. In this study, scaffolds from polymeric blends consisting of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(D,L-lactide-co-glycolide) (PLGA) were fabricated employing a solution-extrusion AM technique, referred to as Computer-Aided Wet-Spinning (CAWS). The scaffold fibers were constituted by a biphasic system composed of a continuous PHBV matrix and a dispersed PLGA phase which established a microfibrillar morphology. The influence of the blend composition on the scaffold morphological, physicochemical, and biological properties was demonstrated by means of different characterization techniques. In particular, increasing the content of PLGA in the starting solution resulted in an increase in the pore size, the wettability, and the thermal stability of the scaffolds. Overall, in vitro biological experiments indicated the suitability of the scaffolds to support murine preosteoblast cell colonization and differentiation towards an osteoblastic phenotype, highlighting higher proliferation for scaffolds richer in PLGA.  相似文献   

9.
《Ceramics International》2015,41(4):5894-5902
The biodegradable ceramic scaffolds with desirable pore size, porosity and mechanical properties play a crucial role in bone tissue engineering and bone transplantation. A novel porous β-dicalcium silicate (β-Ca2SiO4) ceramic scaffold was prepared by sintering the green body consisting of CaCO3 and SiO2 at 1300 °C, which generated interconnected pore network with proper pore size of about 300 μm and high compressive strength (28.13±5.37–10.36±0.83 MPa) following the porosity from 53.54±5.37% to 71.44±0.83%. Porous β-Ca2SiO4 ceramic scaffolds displayed a good biocompatibility, since human osteoblast-like MG-63 cells and goat bone mesenchymal stem cells (BMSCs) proliferated continuously on the scaffolds after 7 d culture. The porous β-Ca2SiO4 ceramic scaffolds revealed well apatite-forming ability when incubated in the simulated body fluid (SBF). According to the histological test, the degradation of porous β-Ca2SiO4 ceramic scaffolds and the new bone tissue generation in vivo were observed following 9 weeks implantation in nude mice. These results suggested that the porous β-Ca2SiO4 ceramic scaffolds could be potentially applied in bone tissue engineering.  相似文献   

10.
There is an extensive possibility of improving characteristics of fibers used in hard tissue engineering, being hydrophobic and less osteoconductive, resulting in the dynamic growth of new tissues. The current work focuses on the fabrication of nanofibers incorporated with titanium dioxide (TiO2) ''as osteoconductive'' and silver (Ag) ''as self-healing'' nanoparticles (NPs). The incorporation of AgNO3 by in situ method not only helped to impart the antibacterial activity but also changed the contact angle from 81 ± 03° in the case of pristine nanofibers to 74 ± 03°, 61 ± 03°, 50 ± 08°, and 39 ± 1.1°, in the composite scaffolds containing 0.01, 0.03, 0.05, and 0.07 M of Ag salts. The incubation in simulated body fluid at 37°C to induce mineralization on nanofiber scaffolds indicated Ca and P crystals' formation. The antibacterial activity showed significantly more toxicity toward E. coli (8.3 ± 0.9 mm) than S. aureus (1.2 ± 0.1 mm). Biocompatibility studies using MTT assay on the pre-osteoblasts showed that both TiO2 and Ag NPs present in the nanofibers are non-toxic to the bone-like cells. However, results show that a higher concentration of Ag NPs (i.e., 0.07 M) is toxic to cells growing. Finally, all the results suggest that the nanofiber scaffolds have considerable scope for future bone tissue engineering materials.  相似文献   

11.
Bioactive and biocompatible porous scaffold materials with adjustable pore structures and drug delivery capability are one of the key elements in bone tissue engineering. In this work, bioactive and biocompatible sodium alginate (SA)/hydroxyapatite (HAP) macroporous scaffolds are facilely and effectively fabricated based on 3D printing of the pre‐crosslinked SA/HAP hydrogels followed by further crosslinking to improve the mechanical properties of scaffolds. The pore structures and porosity (>80%) of the porous scaffolds can be readily tailored by varying the formation conditions. Furthermore, the in vitro biomineralization tests show that the bioactivity of the porous scaffolds is effectively enhanced by the addition of HAP nanoparticles into the scaffold matrix. Furthermore, the anti‐inflammatory drug curcumin is loaded into the porous scaffolds and the in vitro release study shows the sustainable drug release function of the porous scaffolds. Moreover, mouse bone mesenchymal stem cells (mBMSCs) are cultured on the porous scaffolds, and the results of the in vitro biocompatibility experiment show that the mBMSCs can be adhered well on the porous scaffolds. All of the results suggest that the bioactive and biocompatible SA/HAP porous scaffolds have great application potential in bone tissue engineering.  相似文献   

12.
Nanocrystalline TiO2 coated scaffolds offers the possibility to be used in bone tissue regeneration providing not only space for new tissue formation, but also to enhance bioactivity of the implant. In the present study, direct current electrophoretic deposition (EPD) was chosen as simple and low cost technique to coat 3D porous structure of TiO2-x ceramic. Suspension for EPD was prepared suspending nanocrystalline TiO2 particles in isopropanol and adding triethanolamine as dispersant. TiO2 particles were electrophoretically deposited on the surface of TiO2-x scaffolds through varying EPD time and applied voltage. The scaffold pore structure was maintained after applying the coating by EPD. The deposition of nanocrystalline TiO2 coating can be a smart strategy to impart bioactive properties to the 3D scaffold, allowing formation of spherical hydroxyapatite particles on the coated scaffolds after immersion in simulated body fluid. In vitro cell studies does not show cytotoxic effect of nanocrystalline TiO2 coated scaffolds.  相似文献   

13.
《Ceramics International》2022,48(5):6477-6487
A series of porous scaffolds of piezoelectric ceramic barium titanate (BaTiO3) were successfully fabricated by Digital Light Processing (DLP) 3D printing technology in this work. To obtain a high-precision and high-purity sample, the debinding sintering profile was explored and the optimal parameters were determined as 1425 °C for 2h. With the increase of scaffolds porosity from 10% to 90%, the compressive strength and piezoelectric coefficient (d33) decreased gradually. The empirical formulas about the mechanical and piezoelectric properties were obtained by adjusting BaTiO3 ceramics with different porosity. In addition, the distribution of potential and stress under 100 MPa pressure were studied by the finite element method (FEM).  相似文献   

14.
《Ceramics International》2023,49(15):24650-24659
An emerging approach in tissue engineering, especially in cases where large bone cavities remain unfilled after tumor removal, is the implementation of bioceramic scaffolds with magnetic properties for bone augmentation. The fabrication of bioactive porous scaffolds with adequate mechanical characteristics and sufficient porosity represents to assist bone regeneration. one of the most important difficulties in tissue engineering. The final goal is, the in situ apatite formation, a synergistic result of bioceramics, and stem cell activation/differentiation to promote bone regeneration via magnetically driven osteogenic lineage. This study focuses on the development of a novel multifunctional three-dimensional scaffold with certain physicochemical and biological features, addressing diverse difficult issues, such as bioactivity and biocompatibility, as well as bone tissue malignancies. The synthetic approach initiates with the synthesis of CoFe2O4 nanoparticles (NP), followed by the fabrication of Mg2SiO4–CoFe2O4 nanocomposite (NC), employing a two-pot sol-gel synthesis method. Finally, three-dimensional scaffolds (MS) are fabricated via the polymer foam replica technique. X-Ray Diffraction, Thermogravimetry, and Fourier transform infrared spectroscopy, reveal the occurrence of the constituent materials (forsterite: Mg2SiO4 and cobalt iron oxide). Static magnetic characterization at each fabrication stage outlines the collective magnetic features while magnetic particle hyperthermia highlights the heating efficiency quantified as specific loss power (SLP) and specific absorption rate (SAR) in W·g−1 (NP: 19 - 43 °C in 100 s, SLP = 450 W g−1, NC: SLP = 200 W g−1, SAR= 1,07 W g−1). This opens promising pathways in bone tissue regeneration cancer treatments combined with targeted delivery of active/pharmaceutical substances and magnetic hyperthermia.  相似文献   

15.
《Ceramics International》2020,46(10):16439-16446
Bredigite (Ca7MgSi4O16) is a bioceramic with excellent bioactivity and bioresorbability; nonetheless, its inadequate mechanical strength and biocompatibility limit its tissue-engineering application. In this research, interconnected porous bredigite scaffolds were fabricated by sol-gel, sacrificial sponge replica and sintering processes for bone tissue engineering. In order to improve their strength and cytocompatibility, the scaffolds were coated with poly(lactic-co-glycolic acid) (PLGA) via immersion in acetone-based solutions containing different concentrations (5, 10 and 15% w/v) of the polymer. Based on the results, the PLGA coatings to 10% do not suppress the porosity characteristics of the scaffolds appropriate for tissue engineering. It was also found that the polymeric coatings significantly enhance the compressive strength of the ceramic scaffolds, where this alteration is improved by increasing the PLGA concentration of the coating solution. In addition, the viability of stem cells on the bredigite scaffolds are improved by using the PLGA coatings, with the optimal concentration of 10% PLGA according to MTT and cell attachment studies.  相似文献   

16.
Biomaterials must be both sterile and free of contaminants prior to use, and this is particularly critical for the next generation of implants based on tissue engineering. With increasing complexity of tissue engineering scaffolds and multifunctional devices, there is a need for new approaches to decontamination, i.e. cleaning, disinfection, and sterilization. This work presents our recent results on several aspects of decontamination of both metallic and polymeric biomaterials using compressed carbon dioxide (CO2) technology. We demonstrate the removal of a lubricant oil from titanium surfaces with supercritical CO2. In another application, high level disinfection of a model hydrogel contaminated with Staphylococcus aureus has been achieved with liquid CO2.  相似文献   

17.
Three-dimensional (3D) printing is perceived as an innovative tool for change in tissue engineering and regenerative medicine based on research outcomes on the development of artificial organs and tissues. With advances in such technology, research is underway into 3D-printed artificial scaffolds for tissue recovery and regeneration. In this study, we fabricated artificial scaffolds by coating bone demineralized and decellularized extracellular matrix (bdECM) onto existing 3D-printed polycaprolactone/tricalcium phosphate (PCL/TCP) to enhance osteoconductivity and osteoinductivity. After injecting adipose-derived stem cells (ADSCs) in an aggregate form found to be effective in previous studies, we examined the effects of the scaffold on ossification during mandibular reconstruction in beagle dogs. Ten beagles were divided into two groups: group A (PCL/TCP/bdECM + ADSC injection; n = 5) and group B (PCL/TCP/bdECM; n = 5). The results were analyzed four and eight weeks after intervention. Computed tomography (CT) findings showed that group A had more diffuse osteoblast tissue than group B. Evidence of infection or immune rejection was not detected following histological examination. Goldner trichrome (G/T) staining revealed rich ossification in scaffold pores. ColI, Osteocalcin, and Runx2 gene expressions were determined using real-time polymerase chain reaction. Group A showed greater expression of these genes. Through Western blotting, group A showed a greater expression of genes that encode ColI, Osteocalcin, and Runx2 proteins. In conclusion, intervention group A, in which the beagles received the additional ADSC injection together with the 3D-printed PCL/TCP coated with bdECM, showed improved mandibular ossification in and around the pores of the scaffold.  相似文献   

18.
In recent years, 3D printing technology has been increasingly used to fabricate porous bone scaffolds for treating bone tissue defects. Calcium silicate (CS) is a bioceramic material with broad application prospects, but the characteristics of poor sintering performance and fast degradation have limited its further application. In this paper, porous CS scaffolds with different proportions of strontium phosphate (Sr3(PO4)2) were formed by pneumatic extrusion deposition. Experiments showed that the Sr element replaced the Ca element in CaSiO3, which altered the crystal structure of CaSiO3, changed its physical and chemical properties, and improved the sintering property of CS ceramics. At the same time, the substituted Ca element formed Ca3(PO4)2. After mixing Ca3(PO4)2 and CaSiO3, the grain of CaSiO3 was refined and the sintering property was improved. Because of this dual role, the Sr element improved the sintering property of CaSiO3 ceramics and delayed the degradation of CS ceramics. Moreover, cell experiments showed that the addition of the Sr element had a positive effect on cell proliferation and differentiation.  相似文献   

19.
In this study, biodegradable piezoelectric poly(3-hydroxybuthyrate) (PHB) and PHB-TiO2 as well as non-piezoelectric poly(ε-caprolactone) (PCL) fibrous scaffolds were successfully fabricated. First, TiO2 nanoparticles (NPs) with various content (1%, 2%, and 3% wt) were loaded into the PHB matrix to improve its tensile and wettability properties as well as piezoelectric performances. The piezoelectric property of the fibrous scaffolds was examined and a significant improvement in the piezoelectric property of hybrid fibrous scaffolds compared to pure PHB was detected. For the PHB-2%TiO2 sample, a maximum of in the range 4.5–5 V electricity production from a height of 10 cm and a mass drop of 35 g was observed after 150°C heat treatment. Then, an in vitro bactericidal analysis was carried out to test the bacteriostatic effect of the produced piezoelectric biomaterials against E-cherichia coli (E coli) under ultrasound treatment. It was observed that E. coli appeared to be the most sensitive to the PHB-%2TiO2 sample and consequently the antibacterial activity of all the samples against E. coli was dependent on the piezoelectric properties of the samples. The results indicated that the fabricated fibrous scaffolds could be considered as a promising piezoelectric biomaterial with ultrasonically-controlled bacteriostatic activity for various tissue engineering applications.  相似文献   

20.
Bioprinting in tissue engineering applies 3D printing technologies towards the development of precisely designed scaffolds for tissue repair and organ replacement. The printed scaffolds may incorporate polymeric constituents together with biological payloads, including cells and biochemically active additives. The scaffolds can be designed with spatial precision, achieving both biochemical and biophysical heterogeneity that mimic the extracellular environment of the body’s tissues. Recent advances in 3D bioprinting have applied a strategy of controlling physical properties together with bioactivity to influence specific interactions with cellular systems, including spatial and temporal patterns of biochemical and biomechanical cues that regulate cell behavior and improve tissue integration. Important new advances in tissue engineering have now been realized based on these approaches, and clinical applications for printed scaffolds continue to drive further improvements to 3D bioprinter technologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号