首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
In this study, a series of red-emitting Ca3Sr3(VO4)4:Eu3+ phosphors co-doped with La3+ was prepared using the combustion method. The microstructures, morphologies, and photoluminescence properties of the phosphors were investigated. All Ca3Sr3(VO4)4:Eu3+, La3+ samples synthesized at temperatures greater than 700 ℃ exhibited the same standard rhombohedral structure of Ca3Sr3(VO4)4. Furthermore, the Ca3Sr3(VO4)4:Eu3+, La3+ phosphor was effectively excited by near-ultraviolet light of 393 nm and blue light of 464 nm. The strong excitation peak at 464 nm corresponded to the 7F05D2 electron transition of Eu3+. The strong emission peak observed at 619 nm corresponded to the 5D07F2 electron transition of Eu3+. Co-doping with La3+ significantly improved the emission intensity of Ca3Sr3(VO4)4:Eu3+ red phosphors. The optimum luminescence of the phosphor was observed at Eu3+ and La3+ concentrations of 5% and 6%, respectively. Moreover, co-doping with La3+ also improved the fluorescence lifetime and thermal stability of the Ca3Sr3(VO4)4:Eu3+ phosphor. The CIE chromaticity coordinate of Ca3Sr3(VO4)4:0.05Eu3+, 0.06La3+ was closer to the NTSC standard for red phosphors than those of other commercial phosphors; moreover, it had greater color purity than that of all the samples tested. The red emission intensity of Ca3Sr3(VO4)4:0.05Eu3+, 0.06La3+ at 619 nm was ~1.53 times that of Ca3Sr3(VO4)4:0.05Eu3+ and 2.63 times that of SrS:Eu2+. The introduction of charge compensators could further increase the emission intensity of Ca3Sr3(VO4)4:Eu3+, La3+ red phosphors. The phosphors synthesized herein are promising red-emitting phosphors for applications in white light-emitting diodes under irradiation by blue chips.  相似文献   

2.
It was unusual for Bi3+ ions to enhance the emission intensity of phosphors via nonsensitization. Here, La2MoO6:Eu3+, Bi3+ phosphors were successfully synthesized by a high temperature solid-state reaction method in air atmosphere. As the increase of doping concentration of Bi3+, the emission spectra of La2MoO6:Eu3+, Bi3+ phosphors had obvious shifts, splits and the enhancement of intensities, which indicated that the characteristics of the phosphors were modified. To analyze these phenomena, the crystal structure refinements, spectral characteristic analyze and Judd-Ofelt theoretical calculation were mainly performed. Bi3+ ions played the role of the nonsensitizer and affected the distortion of the crystal, the sites of Eu3+ ions, the field splitting energy and the internal quantum yield. Moreover the nephelauxetic effects of Bi3+ ions and the ET process caused synergistically the life times of La2MoO6:Eu3+, Bi3+ phosphors to increase and then gradually decrease. The CIE coordinates of phosphors changed within a small range. This study might be instrumental in promoting the further application of Bi3+ ions in rare earth luminescent materials.  相似文献   

3.
Eu2+ and Mn2+ coactivated β–Ca3(PO4)2 (TCP) phosphors have been prepared by high‐temperature solid‐state reaction. The site occupation and photoluminescence properties of Eu2+ and Mn2+ have been identified and discussed in detail. The energy transfer from Eu2+ to Mn2+ in TCP: Eu2+, Mn2+ phosphors has been validated and demonstrated to be a resonant type via a dipole‐quadrupole mechanism, and the critical distance (RC) calculated by concentration quenching method is 21.76 Å. A color‐tunable emission from violet‐blue to red in TCP: Eu2+, Mn2+ phosphors can be realized via the energy transfer from Eu2+ to Mn2+ ions.  相似文献   

4.
A multifunctional double-perovskite-type Ca2LnSbO6 (Ln = La, Y, Gd, and Lu) phosphors with Eu3+ and Mn4+ co-doped were successfully synthesized and designed to simultaneously apply to temperature sensing and plant growth LED. With temperature varying from 303 to 523 K, the integrated intensity of Mn4+ ions (2Eg → 4A2g) markedly decline swifter comparing to Eu3+ ions (5D0 → 7F2) due to the thermal quenching effect. It implies that Mn4+ is susceptive to the temperature in this work. Eu3+ exhibits high heat resistance, which can be selected as a calibration parameter for the fluorescence intensity ratio temperature sensor. The maximum relative sensitivity (Sr) values of Ca2LnSbO6:1%Eu3+, 0.5%Mn4+ (Ln = La, Y, and Gd) phosphor are estimated as 2.19% K−1 at 443 K, 1.68% K−1 at 503 K, and 1.80% K−1 at 483 K, respectively. They are superior to many recent emerging phosphors. Moreover, upon 365 nm excitation, Ca2LnSbO6:1%Eu, 0.5%Mn (Ln = La, Y, Gd, and Lu) phosphors display a wide red emission peaking at 696, 680, 677, and 684 nm, respectively. They come from the overlapped of 2Eg4A2g of Mn4+ and 5D07F4 transition of Eu3+. Their full widths at half maximum are 34, 35, 35, and 29 nm, respectively. They are all perfectly overlapping the absorption curves of chlorophyll a and chlorophyll b, and their fabricated red phosphor-converted light-emitting diode device ulteriorly corroborated the promising applications for plant growth. Markedly, the systematic analysis of their crystal chemistry and site preferentially occupancy is first reported and discussed by the bond valence theory.  相似文献   

5.
《Ceramics International》2023,49(7):10273-10279
The photoluminescence behavior of inorganic phosphors is generally influenced by thermal stability, which determines the luminescence efficiency of the corresponding devices. Here, a series of Eu2+, Mn2+ co-doped LiAl5O8 blue-green-emitting phosphors with thermal robust are successfully fabricated. The concentration-dependent emission spectra and the decay curves of the as-obtained LiAl5O8: Eu2+, Mn2+ samples manifest the occurrence of the energy transfer from Eu2+ to Mn2+ ions via dipole-dipole interaction, and the corresponding emitted colors are gradually modulated from blue to green under the excitation of 310 nm. Moreover, the zero-thermal-quenching luminescence is observed when the operation temperature is up to 423 K, which is attributed to the energy release from the trapping centers to emitting centers (Eu2+ and Mn2+) at high temperature. Furthermore, a warm white light-emitting diodes (WLEDs) device with correlated color temperature of 5061 K, a color rendering index of 80.6 and long-term stability is fabricated by combining UV LED chip (λex = 310 nm), as-obtained LiAl5O8: Eu2+, Mn2+ phosphor, commercially available red phosphor and green phosphor. These results prove the potential application of the as-obtained LiAl5O8: Eu2+, Mn2+ phosphor for UV-pumped WLEDs devices.  相似文献   

6.
Two cyan-emitting phosphors with different bandwidths were successfully synthesized through the high-temperature solid-state method in a reducing atmosphere. The crystal structures, morphologies, and luminescence properties of the as-prepared phosphors were investigated. The Rietveld refinements of the powder X-ray diffraction (XRD) data demonstrated the single phase of the samples, and two crystallographic sites of La3+ were observed in the crystal structure. Under the excitation of UV light, both Ba0.45Ca2.5La6(SiO4)6: 0.05 Eu2+ and Ba1.45Ca1.5La6(SiO4)6: 0.05 Eu2+ phosphors emitted cyan light due to the 4f65 d1→4f7 transitions of the Eu2+ ion. The emission spectra could be well fitted by two component Gaussian peaks corresponding to two different coordination environments of the Eu2+ ions. The temperature-dependent photoluminescence spectra show a large difference on the thermal stability between the two phosphors. The two phosphors exhibit effective absorption of near-UV light and their internal quantum efficiencies (IQEs) were calculated as 31.5% and 42.4% under 295 nm UV-light excitation. The experimental results indicate that the novel cyan phosphors might have potential applications in white light-emitting diodes (LEDs) based on the near-UV LED chip.  相似文献   

7.
Phosphors doped with Mn4+ ions have strong emission in the red and far-red light regions and are therefore used as red phosphors for indoor plant cultivation light-emitting diodes (LEDs) and white LEDs (w-LEDs). This paper introduces La2Mg(Mg1/3Ta2/3)O6: Mn4+ (Mg2La3TaO9: Mn4+) red phosphors prepared by conventional high-temperature solid-phase method. The broad excitation band of Mg2La3TaO9: Mn4+ phosphor is effectively excited by ultraviolet and blue light in the range of 250–600 nm, with the emission of 707 nm centered on far-red light. The phosphor has a high color purity of 99.07% and an internal quantum efficiency of 59.87%. To further enhance the performance of the phosphor, a cation substitution method was adopted in this paper to synthesize La2Mg(Al1/2Ta1/2)O6: Mn4+ phosphor by replacing [1/3Mg2+–2/3Ta5+] in La2Mg(Mg1/3Ta2/3)O6: Mn4+ with [1/2Al3+–1/2Ta5+]. The luminescence intensity and thermal stability of the samples were enhanced. The emission spectrum of the Mg2La3TaO9: Mn4+ samples matched well with the phytochrome PFR (phytochrome that absorbs far-red light) and is suitable for the preparation of LEDs for indoor plant cultivation. The concentration quenching effect of the samples was investigated, the main mechanism of which is the electric dipole–dipole interaction. Red LEDs and w-LEDs devices were prepared with the synthesized phosphors that produce light stably at different currents. The w-LEDs have a correlated color temperature of 5310 K and a color rendering index of 80.1. Therefore, these samples are expected to be used as red components for w-LEDs.  相似文献   

8.
Ce3+‐activated light emitting diode (LED) phosphors have been extensively examined for photoluminescence, and have been the focus of many detailed structural studies. However, reports of the decay curves of Ce3+‐activated LED phosphors are rare. Although we have reported the decay behaviors of several Eu2+‐activated LED phosphors such as Sr2SiO4, Sr2Si5N8, and CaAlSiN3, we have never conducted an in‐depth study into the decay behavior for Ce3+‐activated LED phosphors. For this study, we investigated the decay curves of well‐known Ce3+‐activated LED phosphors such as La3Si6N11 and Lu3Al5O12. Similar to Eu2+‐activated LED phosphors, the decay behavior of Ce3+‐activated LED phosphors was sensitive to the Ce3+ concentration and to the detection wavelength. There was active nonradiative energy transfer between the Ce3+ activators located at different sites.  相似文献   

9.
A series of luminescent emission‐tunable phosphors Ba3NaLa(PO4)3F:Eu2+,Mn2+ have been prepared by a high‐temperature solid‐state reaction. The Rietveld refinement analysis confirms that the obtained phosphors possess pure apatite crystalline phase and the sites' occupancy of dopant has been also discussed. Upon the excitation of 355 nm, the emission spectra of Ba3NaLa(PO4)3F:Eu2+,Mn2+ consist of two broad bands assigned to 5d–4f transition of Eu2+ and 4T1 (4G)–6A1 (6S) transitions of Mn2+, respectively. Energy transfer (ET) occurs in Eu2+, Mn2+ codoped Ba3NaLa(PO4)3F host. On the basis of the thorough analysis and comparison upon their excitation, emission properties, and the decay behaviors, it is demonstrated that the ET mechanism between Eu2+ and Mn2+ is ascribed to the exchange interaction, and the tunable emission color in the novel apatite host can be realized.  相似文献   

10.
Eu2+, Mn2+ doped Sr1.7Mg0.3SiO4 phosphors were prepared by high temperature solid-state reaction method. Their luminescence properties were studied. The emission spectra of Eu2+ singly doped Sr1.7Mg0.3SiO4 consist of a blue band (455 nm) and a green band (550 nm). The relative intensities of two emissions varied with Eu2+ concentration. Eu2+ and Mn2+ co-doped Sr1.7Mg0.3SiO4 phosphors emit three color lights and present whitish color. The blue (455 nm) and green (550 nm) emissions are attributed to the transitions of Eu2+, while the red (670 nm) emission is originated from the transition of Mn2+ ion. The results indicate the energy transfer from Eu2+ to Mn2+. The mechanism of the energy transfer is resonance-type energy transfer due to the spectral overlap between the emission of Eu2+and the absorption of Mn2+.  相似文献   

11.
Broadband near-infrared (NIR) phosphors have received increasing attention for fabricating phosphor-converted light-emitting diodes (pc-LEDs) as NIR light source. Most of the reported broadband NIR phosphors originate from Cr3+ in weak crystal field environments. Herein, we report a luminescent material, MgAlSiN3:Mn2+ with CaAlSiN3-type structure, demonstrating that broadband deep-red-to-NIR emission can be achieved via doping Mn2+ into crystallographic sites with strong crystal field in inorganic solids. This phosphor is synthesized via easy-handle solid-state reaction, and the optimized sample, (Mg0.93Mn0.07) AlSiN3 shows an emission band with peak at ~754 nm, FWHM of 150 nm, and internal quantum efficiency of 70.1%. The photoluminescence intensity can further be enhanced by co-doping Eu2+ as sensitizer. This work provides a new strategy for discovering new broadband NIR phosphors using Mn2+ in strong crystal field as luminescence center.  相似文献   

12.
《Ceramics International》2016,42(12):13919-13924
A series of green-to-red color-tunable Sr3La(PO4)3:Tb3+, Eu3+ phosphors were prepared by high temperature solid-state method. The crystal structures, photoluminescence properties, fluorescence lifetimes, and energy transfer of Sr3La(PO4)3:Tb3+, Eu3+ were systematically investigated in detail. The obtained phosphors show both a green emission from Tb3+ and a red emission from Eu3+ with considerable intensity under ultraviolet (UV) excitation (~377 nm). The emission colors of the phosphors can be tuned from green (0.304, 0.589) through yellow (0.401, 0.505) and eventually to red (0.557, 0.392) due to efficient Tb3+-Eu3+ energy transfer (ET). The Tb3+→Eu3+ energy transfer process was demonstrated to be quadrupole-quadrupole mechanism by Inokuti-Hirayama model, with maximum ET efficiency of 86.3%. The results indicate that the Sr3La(PO4)3:Tb3+, Eu3+ phosphors might find potential applications in the field of lighting and displays.  相似文献   

13.
A series of single-component blue, green and red phosphors have been fabricated based on the Ca3Gd(GaO)3(BO3)4 host through doping of the Ce3+/Tb3+/Eu3+ ions, and their crystal structure and photoluminescence properties have been discussed in detail. A terbium bridge model via Ce3+ → Tb3+ → Eu3+ energy transfer has been studied. The emission colours of the phosphors can be tuned from blue (0.1661, 0.0686) to green (0.3263, 0.4791) and eventually to red (0.5284, 0.4040) under a single 344 nm UV excitation as the result of the Ce3+ → Tb3+ → Eu3+ energy transfer. The energy transfer mechanisms of Ce3+ → Tb3+ and Tb3+ → Eu3+ were found to be dipole-dipole interactions. Importantly, Ca3Gd(GaO)3(BO3)4:Ce3+,Tb3+,Eu3+ phosphors had high internal quantum efficiency. Moreover, the study on the temperature-dependent emission spectra revealed that the Ca3Gd(GaO)3(BO3)4:Ce3+,Tb3+,Eu3+ phosphors possessed good thermal stability. The above results indicate that the phosphors can be applied into white light-emitting diodes as single-component multi-colour phosphors.  相似文献   

14.
《Ceramics International》2017,43(12):8824-8830
A series of Eu2+ and Mn2+ co-doping Sr3GdLi(PO4)3F phosphors have been synthesized through high temperature solid state reaction. Eu2+ single doped Sr3GdLi(PO4)3F phosphors have an efficient excitation in the range of 230–430 nm, which is in good agreement with the commercial near-ultraviolet (n-UV) LED chips, and gives intense blue emission centering at 445 nm. The critical distance of the Eu2+ ions in Sr3GdLi(PO4)3F is computed and demonstrated that the concentration quenching mechanism of Eu2+ is mostly caused by the dipole-dipole interaction. By co-doping Eu2+ and Mn2+ ions in the Sr3GdLi(PO4)3F host, the energy transfer from Eu2+ to Mn2+ that can be discovered. With the increase of Mn2+ content, emission color can be adjusted from blue to white under excitation of 380 nm, corresponding to chromatic coordinates change from (0.189, 0.108) to (0.319, 0.277). The energy transfer from Eu2+ to Mn2+ ions is proven to be a dipole-dipole mechanism on the basis of the experimental results and analysis of photoluminescence spectra and decay curves. This study infers that the obtained Sr3GdLi(PO4)3F:Eu2+, Mn2+ phosphors may be a potential candidate for n-UV LEDs.  相似文献   

15.
《Ceramics International》2021,47(21):30221-30233
A series of BaGd2O4:Bi3+,Eu3+ phosphors with dual-emitting centers were prepared by high-temperature solid-state method. X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), fluorescence spectroscopy, lifetime decay curve and variable temperature emission spectroscopy were used to systematically study the structure, luminescence performance and temperature characteristics. Under ultraviolet (UV) excitation, the BaGd2O4:Bi3+,Eu3+ phosphor showed a broad-band emission in the blue region corresponding to transitions of Bi3+ ions and the sharp red light emission corresponding to Eu3+ ions. The Bi3+ and Eu3+ ion emission peaks were well-separated, which meets a prerequisite for efficient temperature signal resolution measurement. The fluorescence intensity ratio (FIR) technique was used to measure the different temperature response characteristics between Bi3+ blue emission and Eu3+ red emission. When the temperature varies from 293 K to 473 K, the relative temperature sensitivity (Sr) of BaGd2O4:Bi3+,Eu3+ phosphors is obtained, was determined as 1.0182%K−1. In addition to calculating the relative sensitivity by FIR technology, we can also obtain the value of Sr through experiments and formulas related to the decay life, and found to be 1.0651%K−1. Therefore, BaGd2O4: Bi3+,Eu3+ phosphor is an excellent non-contact optical temperature measurement material.  相似文献   

16.
The doping of transition metal ions in the up-conversion (UC) luminescent material doped with Yb3+/Ln3+ is a facile way to increase their UC luminescence intensities and alter their colors. In this study, La2MgTiO6:Yb3+/Mn4+/Ln3+ (Ln3+ = Er3+, Ho3+, and Tm3+) phosphors showing excellent luminescence properties were prepared by a solid-state method. The sensitivity of the La2MgTiO6:Yb3+/Ln3+/Mn4+ phosphor was double that without Mn4+, because Mn4+ affects the UC emissions of Ln3+ via energy transfer between these ions. Moreover, Mn4+ also acts as a down-conversion activator, which can combine with UC ions to achieve multi-mode luminescence at different wavelengths. Under 980 nm excitation, these samples emit green light (from Er3+ and Ho3+) and blue light (from Tm3+). In contrast, under 365 nm excitation, they emit red light (from Mn4+). Further testing revealed that the La2MgTiO6:Yb3+/Mn4+/Ln3+ phosphors have potential applications in temperature sensing and anti-counterfeiting.  相似文献   

17.
LaScO3:xBi3+,yTb3+,zEu3+ (x = 0 − 0.04, y = 0 − 0.05, z = 0 − 0.05) phosphors were prepared via high-temperature solid-state reaction. Phase identification and crystal structures of the LaScO3:xBi3+,yTb3+,zEu3+ phosphors were investigated by X-ray diffraction (XRD). Crystal structure of phosphors was analyzed by Rietveld refinement and transmission electron microscopy (TEM). The luminescent performance of these trichromatic phosphors is investigated by diffuse reflection spectra and photoluminescence. The phenomenon of energy transfer from Bi3+ and Tb3+ to Eu3+ in LaScO3:xBi3+,yTb3+,zEu3+ phosphors was investigated. By changing the ratio of x, y, and z, trichromatic can be obtained in the LaScO3 host, including red, green, and blue emission with peak centered at 613, 544, and 428 nm, respectively. Therefore, two kinds of white light-emitting phosphors were obtained, LaScO3:0.02Bi3+,0.05Tb3+,zEu3+ and LaScO3:0.02Bi3+,0.03Eu3+,yTb3+. The energy transfer was characterized by decay times of the LaScO3:xBi3+, yTb3+, zEu3+ phosphors. Moreover absolute internal QY and CIE chromatic coordinates are shown. The potential optical thermometry application of LaScO3:Bi3+,Eu3+ was based on the temperature sensitivity of the fluorescence intensity ratio (FIR). The maximum Sa and Sr are 0.118 K−1 (at 473.15 K) and 0.795% K−1 (at 448.15 K), respectively. Hence, the LaScO3:Bi3+,Eu3+ phosphor is a good material for optical temperature sensing.  相似文献   

18.
《Ceramics International》2023,49(10):15320-15332
A variety of Bi3+ and/or Eu3+ doped KBaYSi2O7 phosphors with deep blue, cyan, orange-red, and white light multicolor emissions have been fabricated by a Pechini sol-gel (PSG) method. The KBaYSi2O7:Bi3+ phosphors exhibit an intense cyan emission or a unique narrow deep blue emission when excited by different wavelengths, which may bridge the cyan gap or act as a promising deep blue phosphor for white light-emitting diodes (WLEDs). The tunable multicolor emissions can be achieved by changing the Bi3+ doping concentrations. The Bi3+/Eu3+ co-doped KBaYSi2O7 phosphors display intrinsic emissions of Bi3+ and Eu3+ and an energy transfer process between Bi3+ and Eu3+ can be detected. The luminescence colors of KBaYSi2O7:Bi3+,Eu3+ regularly shift from blue, through cold and warm white, finally toward orange-red by adjusting the relative doping concentrations of Bi3+ and Eu3+. The single-phase white light-emitting material can be generated in both cold and warm white regions by simply varying the Eu3+ doping concentrations. Furthermore, three kinds of WLEDs devices are fabricated by KBaYSi2O7:Bi3+ or KBaYSi2O7:Bi3+,Eu3+ phosphors, which can exhibit dazzling white light emissions with eminent CIE coordinates, correlated color temperature, and color rendering index. The result offers direct evidence that the as-synthesized phosphors may be potentially applied in WLEDs and solid-state lighting.  相似文献   

19.
《Ceramics International》2023,49(20):32758-32767
Cyan light-emitting Ce0.985-xZnxO2:0.015 Tb3+ (x = 0 to 0.2) phosphors were synthesized using the ethylenediaminetetraacetic acid-assisted hydrothermal method. The X-ray diffraction and refinement analyses of the prepared phosphors indicated that the formed face-centered cubic structure remained intact even after the doping of large quantities of Zn2+ ions. However, the incorporation of Zn2+ ions increased the Ce3+/Ce4+ ratio, resulting in the enhancement of oxygen vacancies in the prepared phosphors. The generation of oxygen vacancies caused the evolution of a broad photoluminescence emission band ranging from 400 to 525 nm with a characteristic Tb3+ emission of approximately 543 nm. Two-emission regions in Ce0.885Zn0.1O2:0.015 Tb3+ phosphors were utilized for measuring the fluorescence intensity ratio (FIR) as a function of temperature ranging from 303 to 523 K. At 523 K, the FIR values dropped to approximately 40% of the starting temperature value. The variation of FIR values followed the Boltzmann behavior. The Boltzmann fitting demonstrated the feasibility of the present phosphors for temperature sensor applications. The optimum absolute sensor sensitivity of Ce0.885Zn0.1O2:0.015 Tb3+ phosphors was measured to be 0.0043 K−1 at 398 K with a resolution of approximately 1 K−1. Moderate temperature sensitivity, negligible hysteresis loop, and excellent reversibility revealed the suitability of Ce0.885Zn0.1O2:0.015 Tb3+ phosphors for sensing the temperature in various electronic devices.  相似文献   

20.
A new type of Bi3+,Eu3+ single- and co-doped Na3.6Y1.8(PO4)3 phosphate phosphors were manufactured using conventional high-temperature solid-state reaction technique to explore their application for solid-state lighting. The crystal structure, luminescent properties, luminescent mechanism and quantum efficiency were thoroughly explored. Results show that there are two crystallization sites for Bi3+ and Eu3+ ions. Upon the excitation of 342 and 373 nm, Bi3+ single-doped phosphors exhibit green and blue emission, derived from the 3P1 to 1S0 transition of Bi3+ located in different occupancy sites. Thanks to radiative energy transfer process from Bi3+ to Eu3+, adjustable emission could be acquired by altering Eu3+ content in co-doped phosphors. Pure white-light emission with quantum efficiency value of 22.9% can be realized in Na3.6Y1.8(PO4)3:0.01Bi3+,0.1Eu3+ sample and the integrated intensity of white light emission at 417 K remains 85% of that at room temperature. Our results indicate that Na3.6Y1.8(PO4)3:Bi3+,Eu3+ phosphors have feasible application in high-power ultraviolet driven solid-state lighting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号