首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(K,Na)NbO3 (KNN) is a promising lead-free ferroelectric/piezoelectric system, to which incorporating BaZrO3 can greatly enhance its piezoelectricity, but the mechanism is not clear. This work was conducted to investigate the phase transition in the BaZrO3-modifed KNN system and its contribution to piezoelectricity enhancement, using thin films with a fixed orientation and high compositional homogeneity fabricated by a sol-gel method. Two ferroelectric-to-ferroelectric phase transitions are revealed, which correspond to monoclinic MC- MA phase transition at higher temperature and rhombohedral-monoclinic MC phase transition at lower temperature. It is difficult to distinguish these phases in KNN-based bulk materials, but their differences are clear when conducting high-resolution X-ray reciprocal space mapping (RSM) on the present thin films. Piezoresponse force microscopy experiments also revealed an interesting finding that local piezoelectricity of monoclinic phases was higher than that of rhombohedral ones in KNN-based thin films. This work could shed insights on the fundamental understandings for the effect of the chemical doping, and offer guidance for property optimization in the KNN-based lead-free piezoelectrics.  相似文献   

2.
Highly (001) oriented (K,Na)NbO3 (KNN) lead‐free piezoelectric thin films were grown on LaNiO3 (LNO)‐coated silicon by RF magnetron sputtering. The effects of the top electrodes on the electrical properties of KNN thin films were investigated. The dielectric and piezoelectric properties were remarkably improved in LNO/KNN/LNO (εr = 899 at 1 kHz, d33 = 58 pm/V), compared with that in Pt/KNN/LNO (εr = 584 at 1 kHz, d33 = 26 pm/V). An enhanced ferroelectricity was also obtained in LNO/KNN/LNO, with a remnant polarization of 12 μC/cm2 and a maximum polarization of 23 μC/cm2 at the applied field of 200 kV/cm. Besides, the temperature dependence of piezoelectricity of the films was characterized in this study.  相似文献   

3.
Lead‐free piezoelectric 0.915K0.5Na0.5NbO3‐0.075BaZrO3‐0.01Bi0.5Na0.5TiO3 (KNN‐BZ‐BNT) films were grown on Nb‐doped SrTiO3 substrates with different orientations. The thin films show highly preferential orientations in accordance with the orientations of single crystalline substrates. The films all exhibit a weak contrast and remarkable homogeneity in the local static out‐of‐plane piezoresponse phase images, suggesting a strong self‐polarization. Combining with the analysis of XRD‐RSM, TEM and PFM, the crystalline phase of our samples was determined to be rhombohedral, which has the spontaneous polarization along [111] direction. Thus, the (100)‐oriented film demonstrates the most superior piezoelectric properties. Our detailed studies on structural and electrical properties of KNN‐BZ‐BNT films further clarify the structure‐property relationship and make a step closer to use this lead‐free material for many piezoelectric applications.  相似文献   

4.
It is well known that the potential applications of polyvinylidene fluoride (PVDF) mainly come from the piezoelectricity and ferroelectricity of its polar β phase. Thus, we have investigated the effect of different preparation conditions namely evaporation temperature, type of solvent and additive to enhance the β crystal structures of PVDF thin film. Subsequently, facile and direct soft lithography technique; direct stamping and capillary flow were employed to demonstrate good pattern transfer of PVDF thin films. The piezoelectricity of the microstructure was characterized using piezoresponse force microscopy (PFM) where fairly good piezoresponse was obtained without further processing procedures i.e., annealing or applied pressure/electric field. As such, our solution processable and direct patterning of PVDF techniques offer facile and promising route to produce arrays of isolated microstructures with improved piezoelectric functionality.  相似文献   

5.
Recently, lead-free piezoelectric thin films have received increasing attention due to the growing demands for mircoelectromechanical systems and the significant progress in lead-free piezoelectric research. Here, potassium sodium niobate [(K, Na)NbO3 (KNN)]-based thin films were fabricated via a sol-gel method. The effects of pyrolysis temperature on the resulting microstructure and electrical properties of KNN-based films were investigated. The KNN-based film pyrolyzed at 550°C and annealed at 700°C shows a dominant (100) orientation with a high texturing degree of 91.7%. The microstructures, morphologies, piezo- and ferroelectric properties of the KNN-based films were discussed in association with different pyrolysis temperatures. The crystallization mechanism of the (100) textured KNN-based thin films was elaborated in detail.  相似文献   

6.
Xie S  Gannepalli A  Chen QN  Liu Y  Zhou Y  Proksch R  Li J 《Nanoscale》2012,4(2):408-413
Piezoresponse force microscopy (PFM) has emerged as the tool of choice for characterizing piezoelectricity and ferroelectricity of low-dimensional nanostructures, yet quantitative analysis of such low-dimensional ferroelectrics is extremely challenging. In this communication, we report a dual frequency resonance tracking technique to probe nanocrystalline BiFeO(3) nanofibers with substantially enhanced piezoresponse sensitivity, while simultaneously determining its piezoelectric coefficient quantitatively and correlating quality factor mappings with dissipative domain switching processes. This technique can be applied to probe the piezoelectricity and ferroelectricity of a wide range of low-dimensional nanostructures or materials with extremely small piezoelectric effects.  相似文献   

7.
In the present study, potassium sodium niobate (KNN) thin films were synthesized by means of sol-gel spin coating method. Along with the synthesis, the effects of annealing temperature and various number of coating layers on both the structural and electrical properties were looked into. The results of the study revealed that the annealing temperature had a great impact on the properties of KNN. In addition, the XRD diffractograms and texture coefficient of the synthesized films confirmed that a highly oriented orthorhombic perovskite structure was obtained at 650 °C, whereas at a relatively higher temperature (700 °C), a spurious phase of K4Nb6O17 was evolved. In addition, the growth of KNN at 650 °C exhibited a reasonable resistivity value for piezoelectric applications. Looking into the results, it was discovered that the KNN thin films also found to be dependent on a number of coating layers. Field emission scanning electron microscopy (FESEM) showed that KNN with five coating layers was highly crystalline, cracks-free, and had significantly more homogenous surface morphology and the size of grains being uniform, the resistivity of KNN thin films improved with the increasing number of coating layers i.e., up to five.  相似文献   

8.
Although the multi-phase coexistence makes Bi0.5Na0.5TiO3-based piezoelectric thin films possess stronger piezoelectric properties and more spacious application prospects in electronic devices, the domain reversal mechanism of Bi0.5Na0.5TiO3-based thin films cannot be accurately understood due to the size effect. In this study, the relationship between domain structure and piezoelectric properties of the (0.94-x)Bi0.5Na0.5TiO3-0.06BaTiO3-xBi(Fe0.95Mn0.03Ti0.02)O3 thin films are studied by using visualization technology PFM, structure and electrical properties characterizations. The results show that the addition of Bi(Fe0.95Mn0.03Ti0.02)O3 creates a long-range ordered/short-range disordered nanodomain coexisting structure. This kind of coexisting domain structure can realize the long-range reversal driven by disordered nanodomains under the external electric field, reduce the potential barrier and the hysteresis, and significantly enhance the piezoelectric properties of the thin films. Under the same conditions, the piezoelectric properties of the 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 thin films are enhanced nearly 2.3 times. This provides a reference for exploring the physical mechanism of high performance lead-free piezoelectric thin films.  相似文献   

9.
Lead-free piezoelectric Ba0.85Ca0.15Ti0.90Zr0.10O3 (BCZT) thin films were fabricated on Si/SiO2/TiO2/Pt (100) substrates following chemical solution deposition technique. Microstructure of the nano-sized BCZT particles crystallized in the thin film was thoroughly characterized. Ferroelectric, dielectric and piezoelectric properties of the films were investigated in detail. The BCZT films annealed at 800°C temperature exhibited high remanent polarization of 25 ± 1 μC/cm2, energy density of 17 J/cm3, dielectric constant of 1550 ± 50 and dielectric tunability of 50%. Converse piezoelectric coefficients (d33) obtained from piezo-response force microscopy (PFM) measurements on BCZT grains of different grain size (20-100 nm) distributed on the BCZT 700 film varied widely from 90 to 230 pm/V. The same for BCZT 800 measured on different grain size (30-130 nm) varied from 120 to 295 pm/V. These BCZT thin films with high dielectric, ferroelectric, and piezoelectric properties might be good alternative to the PZT films for thin film piezoelectric device applications.  相似文献   

10.
《Ceramics International》2017,43(6):5047-5052
In this work, we have systematically investigated the piezo/ferroelectric response of (Pb, Ca)TiO3 thin films prepared by polymeric precursor method using simultaneously topography, piezoresponse force microscopy (PFM) and local piezoelectric hysteresis loop measurements. The thin films were grown on Pt/Ti/SiO2/Si substrates and annealed at 400, 500 and 600 °C and subjected to structural characterization using x-ray diffraction, infrared and micro-Raman spectroscopy. The ferroelectric domains structure and the piezoelectric response evolved as a function of thermal annealing temperature as well as the density of active grains (number of switchable domains) progressively increased. Another important characteristic of these films is the onset of large area showing the coexistence of active (stronger piezoresponse signal) and inactive (weak or non piezoresponse signal) grains embedded in the polycrystalline perovskite matrix. A combination of out-of-plane (OP) and in-plane (IP) PFM images revealed local features of polarization component magnitudes in samples surface. Well-defined local piezoelectric hysteresis loop was achieved on top of individual nanometer-scale grains in both samples annealed at 500 and 600 °C, and the switching behavior is evident.  相似文献   

11.
This article aims to provide a comprehensive review of lead-free hybrid nano materials based piezoelectric fillers. It narrates the basic concept of piezoelectricity and discusses the salient properties of piezoelectric materials. Piezoelectric materials divided into classes of ceramics (lead based and lead free), polymers and composites, have been discussed in detail. The potential environmental threat posed by lead (Pb) in the lead based piezoelectric materials have gradually shifted the focus to lead free piezoelectric materials. Hence, lead free piezoelectric materials have been the main focus of this review. Lead free hybrid fillers, to enhance the piezoelectric properties of composites, have been covered as an integral part of this review. This topic has been covered principally under headings of KNN based fillers, Bi based fillers, Ba based fillers and MoS2 based fillers. The effect of doping into piezoelectric fillers have also been discussed in detail. With piezoelectricity being used in different fields of applications, a part of this review elucidates the use of piezoelectric materials to cater to the needs of technology. A brief overview has been provided regarding the use of piezoelectric materials in energy harvesting, as sensor, actuators, transducers, in structural health monitoring and repair, and in biomedical applications. The future scope of piezoelectricity and piezoelectric materials in fulfilling the demands of technology has been discussed in the concluding part of the review.  相似文献   

12.
Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-xPT) single crystals exhibit ultrahigh piezoelectric property and have already been applied in various industrial fields. Here, spatial distribution of coexistent phases and corresponding local piezoelectric responses in a morphotropic phase boundary (MPB) PMN-xPT single crystal are thoroughly investigated by confocal Raman spectroscopy coupled with piezo-response force microscopy (PFM). Different from previous studies on MPB crystals, spatial distribution of coexistent phases is exhibited intuitively in an image obtained by confocal Raman mapping. Via in-situ PFM measurements, domain morphology of each coexistent phase is observed. Moreover, local piezoelectric responses of each coexistent phase are obtained by switching spectroscopy PFM measurements, indicating that Ma and Mc phases behave like PNRs and polar matrix in PMN-xPT crystals Our work clarifies the contribution from different phases to the giant piezoelectric performance, which can deepen the understanding on the ultrahigh piezoelectricity in PMN-xPT crystals and provide the key point for developing novel high piezoelectricity materials.  相似文献   

13.
Sodium potassium niobate (KNN) piezoelectric ceramic thin films were prepared by a chemical solution deposition method, in which the introduction of appropriately combinational organic stabilizing agents, including monoethanolamine (MEA), diethanolamine (DEA), and ethylenediaminetetraacetic acid (EDTA), dramatically suppressed the volatile loss of the alkali ions, improved the crystallinity, and promoted crystal orientation of the perovskite phase in the resulting KNN thin films. Theoretical analyses including ab initio calculation based on molecular model indicated that stronger binding structure could form comprising the alkali ions and the combinational EDTA‐(DEA‐MEA) chemical agents than the cases of using individual binding agents separately. Outstandingly large effective piezoelectric strain coefficient d33 under the substrate clamping condition was achieved. The theoretical and experimental results provide the insight on the underlying interaction mechanism between the multiple stabilizing chemical agents and metal ions, and the guidance for establishing the methodology for producing high quality oxide thin films from chemical solutions with dedicatedly designed combinational stabilizing agents.  相似文献   

14.
Lead‐free (K,Na)NbO3 (KNN) piezoelectric films were fabricated on Nb:SrTiO3 substrates by sol–gel process, and the influence of thermal processing details on the microstructure and ferroelectric property was investigated. Experimental results confirmed the different appearance of polycrystalline growth and epitaxial growth modes during the crystallization of KNN thin films. These two growth modes occurred under different thermal conditions within the narrow pyrolysis temperature scope ranging from 400°C to 500°C, respectively. By considering these findings, an optimizing combination between pyrolysis and annealing procedure was thought to be crucially important to obtain high‐performance KNN films with excellent crystallization state.  相似文献   

15.
Lead-free ferroelectric K0.5Na0.5NbO3 (KNN) films with different thicknesses were prepared by polyvinylpyrrolidone (PVP)-modified chemical solution deposition (CSD) method. The KNN films with thickness up to 4.9 μm were obtained by repeating deposition-heating process. All KNN thick films exhibit single perovskite phase and stronger (1 1 0) peak when annealed at 650 °C. The variation of dielectric constant with thickness indicates that there exists a critical thickness for the dielectric constant in the KNN films which should lie in 1.3–2.5 μm. The similar trend is observed for the ferroelectric and piezoelectric properties of KNN films. Both the remnant polarization Pr and the piezoelectric coefficient d33 of KNN thick films increase with the film thickness and become saturated after the critical thickness.  相似文献   

16.
An apparatus is devised for measuring the real and imaginary components of the piezoelectric strain constant d = d′ ? id″ for polymer films with a d.c. bias field. Electric fieldinduced piezoelectricity is observed for films of several types of polymer. The ratio of the piezoelectric constant to the d.c. bias field gives (? + κ)/G where ? is the dielectric constant, κ is the electrostriction constant, and G is the elastic constant. The temperature dependence of the field-induced piezoelectricity gives, therefore, combined information of dielectric and elastic properties of polymers. After heating to about 95°C followed by cooling to room temperature, maintaining a constant d.c. basis on a poly(vinyl chloride) film, piezoelectricity is observed at null d.c. field, which suggests the introduction of a residual polarization in the films.  相似文献   

17.
Lead-free (K0.5Na0.5)NbO3 (KNN) thin films were prepared on Pt/Ti/SiO2/Si substrates by a sol–gel processing method, and titanium diffusion from the substrates into the KNN films under different thermal treatment conditions were investigated by the secondary ion mass spectroscopy depth profile and X-ray photoelectron spectroscopy surface analysis. Titanium diffusion was evident in all the KNN thin films, which was further aggravated not only by increasing the annealing temperature, but also surprisingly by higher ramping rate attributed to the resulting larger grain boundaries. The pronounced effects of the titanium diffusion and the resulting substitution of Ti4+ for Nb5+ with different valence states on the composition, structure, and electrical properties of the KNN thin films are analyzed and discussed. The results showed that the Ti diffusion from the substrate played a crucial role in affecting the structure and electrical properties of the ferroelectric KNN thin films deposited on Pt/Ti/SiO2/Si substrate.  相似文献   

18.
(K0.5Na0.5)NbO3 (KNN) thin films have been deposited onto Pt/Ti/SiO2/Si and quartz substrates by RF magnetron sputtering. The films were deposited at 400°C with the variation in oxygen mixing percentage (OMP) ratio from 0% to 100% and annealed at 700°C in oxygen atmosphere. The crystallinity of the films is found to be increased with increased OMP. Dielectric properties of the films were examined over the frequency range from 1 kHz to 1 MHz and the temperature range of 30°C to 400°C. The Curie temperature of the films was found to be in the range 369°C–373°C. For the first time, the split postdielectric resonator (SPDR) method was used to measure the microwave (10–20 GHz) dielectric properties of KNN thin films. The optical properties of as‐deposited and annealed KNN thin films were investigated by means of transmittance spectra. The optical bandgap is calculated by using the Tauc relation, and found to be in the range 4.34–4.40 eV and 4.29–4.37 eV for the as‐deposited and annealed films, respectively. The refractive index (n700nm) of the films found to be in the range 1.98–2.01 and 1.99–2.07 for as‐deposited and annealed films, respectively. The refractive index dispersion is analyzed by using Wemple–DiDomenico (W–D) single‐oscillator model. The effect of annealing and OMP on the refractive index, packing density and W–D parameters has been investigated. The average single oscillator energy (Eo) and dispersion energies (Ed) of the annealed KNN thin films are in the range of 6.17–7.16 eV and 18.77–22.19 eV, respectively. AC‐conductivity of the annealed films was analyzed by using double power law. Ag/KNN/Pt thin films followed the ohmic conduction (J ∝ Eα, where α ~1) and the low leakage current density obtained for the deposited at 100% O2 is 3.14 × 10?5 A/cm2 at 50 kV/cm.  相似文献   

19.
We have investigated the electromechanical response of potassium sodium niobate (K0.5Na0.5NbO3 or KNN) thick films. The high‐field strain hysteresis loops and weak‐field converse piezoelectric d33 coefficient of the films were measured and compared with those of KNN bulk ceramics under the same electric field conditions. The converse d33 values of the thick films and bulk ceramics were equal to 82.5 and 138 pm/V, respectively, at 0.4 kV/mm. The fundamental difference between the piezoelectric response of the KNN films and the ceramics was studied in terms of the effective (“clamped”) piezoelectric d33 coefficient. The reduction in the piezoelectric d33 coefficient of the KNN films, resulting from the clamping by the substrate, was compared to lead‐based ferroelectric thick films, including Pb(Zr,Ti)O3 (PZT) and (1 ? x)Pb(Mg1/3Nb2/3)O3?xPbTiO3 (PMN‐PT). We propose a possible explanation, based on the particular elastic properties of KNN, for the small relative difference observed between the “clamped” and “unclamped” (“bulk”) d33 of KNN, in comparison with lead‐based systems.  相似文献   

20.
BiFeO_3-K_(0.5)Na_(0.5)NbO_3无铅压电陶瓷的烧结工艺   总被引:3,自引:1,他引:2  
采用传统固相烧结法制备性能良好的铁酸铋(BiFeO3,BF)掺杂的铌酸钾钠(K0.5Na0.5NbO3,KNN)压电陶瓷(BF-KNN),着重研究BF摩尔(下同)掺量对KNN结构与压电性能的影响规律以及BF-KNN陶瓷的烧结工艺。结果表明:适量BF有利于提高BF-KNN的压电性能,当BF掺量≥1%后,压电性能急剧降低。与仅烧结一次的样品相比,二次烧结BF-KNN陶瓷形成更加稳定的正交晶系钙钛矿结构,陶瓷组织致密,压电性能大幅度提高,压电常数(d33)、平面机电耦合系数(kp)与机械品质因数(Qm)分别达134pC/N、46%和364,但介电性能明显降低,相对介电常数(εr)从退火前的554降至388。一次、二次烧结样品的体积密度分别为4.12g/cm3和4.36g/cm3,相对密度分别为91.35%和96.67%。在温度低于490℃、频率为100kHz时,二次烧结样品的介电损耗tanδ5%,其Curie温度高达420℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号