首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of solids loading and particle shape on the green microstructure of slip-cast bodies was investigated. Three commercial silicon carbide (SiC) powders (two coarse varieties with the same particle-size distribution (PSD) but different particle shapes and a finer powder) were used to prepare bimodal PSDs designed to maximize the packing density. Various surface-active agents (anionic, cationic, and non-ionic) were tested. Anionic dispersants were the most effective in dispersing aqueous SiC slurries. The effectiveness of dispersants was evaluated by sedimentation tests using very dilute slurries, by rheology, and by the packing density of slip-cast bodies prepared from suspensions loaded with 62.5 wt% solids, stabilized with a fixed amount of dispersant (0.25 wt%, relative to the solids). Then, the best dispersant was selected to study the effects of dispersant and solids concentrations on the degree of packing of bimodal suspensions that contained the sharper-edged coarse particles. It could be observed that the green density was dependent on both parameters, initially showing an increase to a maximum, followed by a decreasing trend. A high value of 74.5% of the theoretical density (TD) was obtained from suspensions that contained 70 wt% solids and 0.1 wt% dispersant. The substitution of the angular coarse particles by similarly sized but more spherical particles resulted in an additional increase in green density to >76 wt% TD. The results can be interpreted in terms of freedom of particles upon deposition on the cast layer, which enables particle rearrangement, and segregation phenomena.  相似文献   

2.
Advances in Manufacturing Boron Carbide-Aluminum Composites   总被引:2,自引:0,他引:2  
An infiltration method for preparing a boron carbide-aluminum (B4C-AI) composite was modified so as to reduce the processing temperature and time. Titanium metal and titanium-based compounds were added to B4C powders to enhance the wettability of the liquid aluminum on boron carbide skeletons. As expected, the time required for infiltration was significantly reduced on using the additives. Of these additives titanium metal was the most effective in facilitating aluminum infiltration. Another method, involving the heat treatment of boron carbide compacts at 1300°3C for 1 h before infiltration, was attempted, and a significant improvement was gained. These findings show that the treatment modified the surface condition of boron carbide powders via the removal of oxides. An additional attempt was made to increase the boron carbide content of the system by using a bimodal powder mixture. A maximum green density of 78% was achieved by mixing fine particle size and coarse particle size powders. The infiltrated boron carbide composites prepared using a bimodal powder with a preinfiltration heat treatment of the compacts exhibited promising mechanical properties, such as a Vickers hardness ( H V) of 11 Gpa and an indentation toughness ( K IC) in the range of 5–7.5 MPa·m1/2.  相似文献   

3.
At the intersection between chemical and materials engineering, binder jetting is an additive manufacturing technique that foregoes many of the limitations of the conventional metal 3D printing technique. Binder composition and thermal post-processing influence final part quality. Herein, three different atmospheres, ranging from reactive (air) to non-reactive (vacuum, argon), are studied to determine their effect on the quality of binder jetting printed parts after thermal treatments, namely debinding and sintering. These parts were printed using SS316L powder. Samples debound in air were negatively affected as they presented high porosities and low densities, averaging 6.80 (±0.4) g/cm3, whereas samples debound and sintered under vacuum demonstrated the best outcome with low porosities and high densities, averaging 7.65 (±0.1) g/cm3. This study highlights how oxide formation during debinding causes ferrite phase formation during sintering and how it affects atomic diffusion in the samples during both thermal treatments. This research also demonstrates the respective effects of these on the densification and porosity of parts.  相似文献   

4.
Boron carbide is the third hardest material known, with a high melting point (2450 °C) and poor sintering ability. Therefore, boron carbide is a challenging material for shaping by conventional processing routes and can still be considered as unsuitable for commercial production of ceramics parts by additive manufacturing technologies. This work reports the first successful preparation of boron carbide ceramics fabricated by fused filament fabrication from a newly developed composite filament containing 65 wt% of micron-sized boron carbide powder dispersed in a thermoplastic binder. A commercial FFF desktop printer with a 0.40 mm nozzle was used for manufacturing of complex-shaped green bodies. Almost fully dense boron carbide ceramics with printed parts sized up to 4 centimeters and relative density higher than 96% after sintering were prepared. The DTA/TG analysis of composite filament and heat microscopy technique were used to set the debinding temperature program with critical temperature at 140 °C, due to the thermal decomposition of the binder. Microstructure SEM images after sintering showed excellent material homogeneity, while micro-CT images showed very well retained experimental shapes of collimator-like printed grids. The x-ray diffraction proved the presence of boron carbide phase with the free carbon phase at the level of about 1 wt% without significant influence on the measured hardness value of 29.88 ± 1.27 GPa.  相似文献   

5.
Obtaining dense fine ceramics by the binder jetting additive manufacturing process is challenging. A slurry-based binder jetting process, such as the layerwise slurry deposition (LSD-print) process, can enable the printing of dense ceramic parts. This work describes a procedure to develop and qualify a suitable ink to manufacture silicon carbide green parts by LSD-print. Not only the printability but also the compatibility of the ink with the powder bed and the effect of the binding agent on the properties of the green parts are considered. Both aspects are important to obtain high green strength, which is necessary for printing large or thin-walled parts. Characterization methods, such as rheological and surface tension measurements, are applied to optimize three selected inks. The interplay between ink and powder bed is tested by contact angle measurements and by comparing the biaxial strength of cast and additively manufactured specimens. Out of the three binding agents tested, a polyethyleneimine and a phenolic resin have a high potential for their use in the LSD-print of silicon carbide green bodies, whereas a polyacrylate binding agent did not show the required properties.  相似文献   

6.
《Ceramics International》2019,45(10):12609-12624
Binder jetting is expected to become the universal process for preparing ceramic parts because it can overcome multiple problems, such as the difficulty to prepare complex-shaped ceramic parts and the shrinkage of the sintering process, which appear in conventional ceramic preparation process. This paper introduces principles, steps, and applications of binder jetting printing ceramics. Furthermore, five key factors of binder jetting printing ceramics (powders, binders, printing parameters, equipment, and post-treatment process) have been investigated. Accordingly, effects of powders (including shape, particle size and distribution, and additives), binders (including binding method, droplet-formation mechanism, and droplet-infiltration kinetics), printing parameters (including layer thickness, saturation, solid binder, and printing orientation), equipment, and post-treatment (including de-powdering process, and densification process) on density, roughness, strength, accuracy, and resolution of ceramic parts have been discussed and summarized. This paper provides detailed analysis of techniques and mechanisms of binder jetting of ceramics, giving guidance on how to handle raw materials and select various processing parameters for achieving desired performance.  相似文献   

7.
A novel method of producing complex ceramic and metallic parts with designed internal channels is developed. The method utilizes a combination of the additive manufacturing technique of solvent jetting and spark plasma sintering (SPS.) The developed manufacturing approach brings benefits in producing complex shapes with internal channels. Along with geometric customization of the 3D printed mold, a major advantage of this method is the removal of the need for a long debinding process, usually necessary with other 3D printing methods, by using the SPS. High density ceramic and metallic complex parts with internal channels were successfully produced with close to theoretical densities. The conducted studies include the development of a model that can predict the evolution and/or distortions of the complex-shaped powder assembly during the sintering process. The model is based on the continuum theory of sintering formulations embedded in a finite element code.  相似文献   

8.
Reactive nanocomposite powders with bulk compositions of 8Al·MoO3, 12Al·MoO3, and 8Al·3CuO were prepared by arrested reactive milling (ARM) and consolidated into cylindrical and rectangular pellets using a uniaxial die. Pellets were pressed at room temperature without any binder. Reference pellets were prepared from conventional Al powder and from Al-metal oxide powder blends with bulk compositions identical to those of the nanocomposite powders. Materials could be consolidated to densities greater than 90% of the theoretical maximum density while maintaining their high reactivity. Tensile strength and flexural strength of the consolidated materials were measured using diametrical compression and three-point flexural strength tests, respectively. Higher strengths were observed for higher relative densities, and the strength of the composite materials was comparable to that of consolidated aluminum powders. Yield strength of the reactive nanocomposite powders was determined from compaction load vs. die displacement curves using the Heckel equation. It was greater for the nanocomposite powders as compared to the powder blends or pure aluminum. Organic, or low melting point metal binders were added to selected samples to improve strength. Respective pellets were pressed at temperatures above the melting point of the metal binder. The highest density (~ 2.9 g/cm3) and tensile strength (~ 17.5 MPa) was observed with indium as binder. All consolidated samples were found to be highly reactive, and the effect of partial reaction during consolidation remained below the limit quantifiable by differential scanning calorimetry.  相似文献   

9.
Metal–ceramic composite pipes were prepared through simultaneous extrusion of different pastes by a multi-billet extrusion method. ZrO2 and stainless steel powders were chosen, and an aqueous solution of water-soluble polymer, hydroxypropyl methylcellulose (HPMC), was used as binder. The maximum extrusion pressure and the minimum amount of binder required reached their lowest values when the mixing fraction of ZrO2 powder was 0.4. The minimum amount of binder for forming the outer layers was 4%–5% higher than that for inner layers, even for the same powder. It was possible to decrease the binder content and broaden the extrudable range of the binder content by means of mixing coarse and fine powders.  相似文献   

10.
利用喷雾干燥技术对TiB_2/Al_2O_3复合粉体进行造粒,研究了浆料固相含量及粘结剂含量对喷雾干燥粉体颗粒形貌、结构、松装密度、流动性等的影响。结果表明:当浆料固相含量为47.6%,分散剂和粘结剂分别为固相质量的0.4%和1.0%时,浆料具有合适的粘度和最佳的分散稳定性,喷雾造粒得到的粉体为球形或近球形,具有较高的松装密度和流动性,能满足各种压制成型的需要。  相似文献   

11.
The current work presents for the first time results on the Additive Manufacturing of SiSiC complex parts based on the Layerwise Slurry Deposition (LSD) process. This technology allows to deposit highly packed powder layers by spreading a ceramic slurry and drying. The capillary forces acting during the process are responsible for the dense powder packing and the good joining between layers. The LSD process can be combined with binder jetting to print 2D cross-sections of an object in each successive layer, thus forming a 3D part. This process is named LSD-print.By LSD-print and silicon infiltration, SiSiC parts with complex geometries and features down to 1 mm and an aspect ratio up to 4:1 could be demonstrated.The density and morphology were investigated for a large number of samples. Furthermore, the density and the mechanical properties, measured by ball-on-three-balls method, were in all three building directions close to isostatic pressed references.  相似文献   

12.
Alumina ceramic mouldings with different solid contents ranging from 55 to 70 vol% and different ratios of coarse/fine powders, i.e. 0.4 μm (fine) and 3 μm (coarse), respectively, were prepared by compression moulding at 75 °C under a compressive stress of 10 MPa. The porous parameters, such as porosity, pore size and pore size distribution, of the green compacts were evaluated after removal of organic vehicles. Experimental evidence showed that the green density, as well as the sintered density, of the moulded alumina increased linearly with increased solid loading to an optimum of 65 vol% and decreased roughly linearly with increased coarse/fine ratio. Further increase in solid loading reduced particle packing efficiency, resulting in lower green and fired densities. No considerable improvement in green and sintered density of the moulded alumina was achieved by adjusting the coarse/fine ratio, which is due to the fact that coarse particles suppress the driving force of densification. The green compacts generally showed a bimodal pore size distribution character which may be the most important factor in dominating the densification of the powder compacts. The peak frequency at larger pore region is approximately 20–35 μm in diameter and at the smaller pore region is ˜50–95 nm in diameter. The larger pores are believed to be due to the presence of internal voids originating from entrapped gas and are probably caused by the removal of organic vehicles.  相似文献   

13.
Composite powders of tungsten carbide (WC) and iron rich binder were prepared by an innovative approach, which consists in sputtering of a metallic binder on the tungsten carbide particles. The phase composition, microstructure and mechanical behaviour of WC coated powder composites with binder contents from 6 to 9 wt.% were characterized. η-Phase is early formed during sintering and its effect on the mechanical behaviour was investigated and related to the microstructure and atomic structure. The results show that the presence of η-phase has not a hazardous role in toughness as is previewed in conventional cemented carbide. Despite the presence of η-phase, a good compromise between toughness and hardness was attained in composites prepared from iron rich binders sputtered on WC powders.  相似文献   

14.
Dense SiO2 glass was produced at ∼1000°C by using highly ordered compacts of spherical, nearly monosized, amorphous SiO2 particles. In Part I of this study, the formation and characterization of powders, suspensions, and green bodies are described. Thermogravimetry and DTA revealed that substantial loss of bound water occurs in powders calcined at temperatures as low as 200°C. Surface area and density measurements were used to show that the water loss occurs without micropore formation. FTIR spectroscopy revealed that residual silanol groups persist to the highest temperatures (1050°C) studied. The state of particulate dispersion in suspensions was modified by pH adjustment and monitored by rheological measurements. Flocculated suspensions (low pH) produce inhomogeneous, low-density powder compacts with highly bimodal pore-size distributions. Uniform green bodies (with higher packing densities) were prepared using well-dispersed suspensions (high pH). Two-dimensional, close-packed hexagonal arryas of particles were observed in these compacts. Pore-size distributions were narrower, but still bimodal due to the presence of three-particle and four-particle pore channels. The sintering behavior of these compacts is described in part II.  相似文献   

15.
A series of placebo powders for inhalation was characterized regarding bulk density and powder flowability using different techniques. The powders were of the ordered mixture type and were prepared by mixing a pharmaceutical carrier grade of lactose with different fractions of intermediate sized and fine (i.e., micronized) lactose. A modified Hausner Ratio was obtained by measurement of the poured and the compressed bulk densities. Other tests investigated were the angle of repose, the avalanching behaviour using the AeroFlow, and the yield strength using the Uniaxial tester. Furthermore, the relation between ordered mixture composition and flowability was examined.Of the methods investigated, the modified Hausner Ratio discriminates well between the investigated powders and seems to have the widest measuring range. It was also found that the poured and compressed bulk densities provide information about the packing of the particles in the powders. A good correlation was obtained between the modified Hausner Ratio and the angle of repose. The AeroFlow was suitable for powders with a low percentage of fine particles, but could not discriminate between the more cohesive powders. The Uniaxial tester, on the other hand, seems to be better suited for more cohesive powders.Regarding the powder composition, addition of micronized particles has a strong influence on the flowability of ordered mixtures, while intermediate sized particles have little impact on the powder flow.  相似文献   

16.
The compaction behavior of fine alumina powders with different particle sizes or bimodal particle-size distributions that are undergoing pressure filtration was investigated. Three alumina powders—average particle sizes of 0.2—0.86 μm—were compacted to a solids fraction of 62—65 vol% from suspensions at pH 3, which was the pH level at which the suspensions showed their lowest viscosity. When the powders of different average sizes were mixed, the suspensions showed better flowability, and the lowest viscosity was obtained when the fraction of fines was ∼30 vol% and pH = 3. The mixed-sized powder suspensions were compacted to higher density than the suspensions of unmixed fine or coarse powders, and the maximum density was obtained for mixed suspensions that had the lowest viscosity, despite the different particle-size ratio. Maximum densities of 72.5% and 75.0% were attained when the size ratios were 2 and 5, respectively. The compacts that were pressure-filtered from mixed suspensions exhibited a single-peaked pore-size distribution and a homogeneous microstructure, whereas the pore-size distributions of dry-pressed compacts were double-peaked. The sintering behavior of the compacts that were pressure-filtrated from bimodal powders exhibited significantly better sinterability and much-less linear shrinkage than the coarser powders and the dry-pressed powder compacts.  相似文献   

17.
Thermoplastic filaments for Fused Deposition Modeling fabrication of mullite ceramic components were produced from a polymethylsiloxane ceramic precursor, γ-Al2O3 powder and ethylene vinyl acetate (EVA) as an organic, elastomeric binder. Two micron-sized γ-Al2O3 powders with different particle size distributions were used. Both type of powders could be successfully 3D printed, however γ-Al2O3 with finer particle size resulted in better quality of printed parts with much smoother surface.Sintering experiments showed that mullite starts forming already at 1250 °C, but a final sintering of 1550 °C is necessary to achieve pure mullite using the coarse powder, while some residual α-Al2O3 was present when using finer powder.Results demostrate that Fused Deposition Modeling can be used to shape preceramic polymers to generate large scale components with a complex shape in which, during firing, the siloxane produces highly reactive silica that allows for the in-situ formation of silicate ceramic phases, such as mullite.  相似文献   

18.
In this study, additive-manufactured silicon carbide preforms were joined and densified by reaction bonding via liquid silicon infiltration. The silicon carbide preforms were first printed by binder jetting additive manufacturing. To demonstrate concurrent joining and densification, two preforms with carbon or parchment papers at the interface were concurrently joined and infiltrated by liquid silicon. Results showed a robust interface with thicknesses ranging from 150 to 500 µm, depending on the paper type and the number of paper layers. High-energy synchrotron X-ray revealed that β-phase silicon carbide was formed inside the interface. Finally, two additively manufactured samples with complicated channel geometry were successfully joined. Energy dispersive spectroscopy of the interface of the channeled samples showed a consistent and robust joining. This concurrent approach of joining and densification enables efficiency improvement of fabricating silicon carbide parts with complicated geometries and widens geometry freedom for additive manufacturing of silicon carbide.  相似文献   

19.
Although ceramic particle-metal matrix materials (i.e., cermets) can offer superior performance, manufacturing these materials via conventional means is difficult compared to the manufacturing of metal alloys. This study leverages the laser powder bed fusion (LPBF) process to additively manufacture dense tungsten carbide (WC)-17 wt.% nickel (Ni) composite specimens using novel spherical, sintered-agglomerated composite powder. A range of processing parameters yielding high-density specimens was discovered using a sequential series of experiments comprised of single bead, multi-layer, and cylindrical builds. Cylinders with a relative density >99% were fabricated and characterized in terms of microstructure, chemical composition, and hardness. Scanning electron microscopy images show favorable wetting between the Ni binder and carbide particles without any phase segregation and laser processing increased the average carbide particle size. Energy dispersive X-ray and X-ray diffraction analyses detected traces of secondary products after laser processing. For samples processed at high energy densities, complex carbides and carbon agglomerate phases were detected. The maximum hardness of 60.38 Rockwell C is achieved in the printed samples. The successful builds in this study open the way for LPBF of dense WC-Ni parts with a large workable laser power-laser velocity processing window.  相似文献   

20.
This work aims to analyse the impact of powders which are not conventionally intended for powder injection moulding (PIM) and how their characteristics influence the behaviour of the feedstock during mixing. Tests were performed with different alumina powders using the same binder system. The results show that mixing has a strong impact on the packing density of powders inside the feedstock, while the deagglomeration of powders makes it possible to achieve high critical powder volume concentrations (CPVCs) equal to or greater than 58 vol%. The CPVC depends on the deagglomeration efficiency. The agglomeration state – especially cohesion of the agglomerates – has an influence on the CPVC. The comparative study of mixing torques shows that the grain size and surface area of powders have a major impact on the mixing behaviour of the feedstock. During the implementation of powders, variabilities in the homogenisation of the powder/binder system and in deagglomeration are achieved as a result of powder agglomeration. It was demonstrated that the powders in this study perfectly satisfy the criteria imposed by the mixing process although they are not intended for PIM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号