首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2023,49(20):33265-33274
In this study, a new method of carbonizing hafnium nitride was proposed to synthesize ultrahigh-temperature hafnium carbonitride (HfCxNy) powders. The new method helps to maintain both the purity of phases and control the content of nitrogen in the HfCxNy. The results show that the as-prepared HfCxNy powders have a single phase, with an average particle size of approximately 2 μm, and Hf, C and N are evenly distributed. Moreover, the microstructures, phase compositions, ablation properties and mechanism of the HfC0.62N0.38 composites under a plasma ablation environment were studied in detail. The results show that the HfC0.62N0.38 composites exhibited excellent ablation resistance at 3073 K for 60 s and the ablation mechanism of HfC0.62N0.38 can be identified as HfC0.62N0.38→HfCxOy→HfO2. The mass ablation rate of the HfC0.62N0.38 composite is evaluated to be 1.36 mg/cm2∙s, which is lower than that of HfC ceramics. Our work is intended to provide new insight regarding the development of ultrahigh-temperature ceramics and widen their applications.  相似文献   

2.
《Ceramics International》2020,46(10):16068-16073
In this study, nonstoichiometric hafnium carbonitrides (HfCxNy) were fabricated via short-term (5 min) high-energy ball milling of Hf and C powders, followed by combustion of mechanically induced Hf/C composite particles in a nitrogen atmosphere (0.8 MPa). The obtained HfC0.5N0.35 powder exhibited a rock-salt crystal structure with a lattice parameter of 0.4606 nm. The melting point of this synthesized ceramic material was experimentally shown to be higher than that of binary hafnium carbide (HfC). The nonstoichiometric hafnium carbonitride was then consolidated under a constant pressure of 50 MPa at a temperature of 2000 °C and a dwelling time of 10 min, through spark plasma sintering. The obtained bulk ceramic material had a theoretical material density of 98%, Vickers hardness of 21.3 GPa, and fracture toughness of 4.7 MPa m1/2.  相似文献   

3.
In order to improve the anti-oxidation performance of C/SiC composites at high temperature, C/SiC composites should be modified by self-healing components. SiBCN ceramic is an ideal self-healing component because of excellent oxidation resistance and thermal stability. C/SiC composites were modified by PDC SiBCN ceramic (C/SiC-SiBCN) by using CVI combined with polymer infiltration and on-line pyrolysis (PI-OP). The oxidation behaviors of C/SiC composites fabricated by CVI method and C/SiC-SiBCN composites fabricated by CVI + PI-OP method and CVI + PIP method at different temperatures in air were compared. The results showed that the strength retention ratios of the composites fabricated by the three methods decreased with the increase of temperature. Compared with the samples fabricated by the other two methods, the weight loss of the samples fabricated by CVI + PI-OP method was greater, but the strength retention ratio was higher.  相似文献   

4.
5.
Low-carbon MgO-C specimens with dimension of 36 mm×36 mm were prepared using fused magnesia, flake graphite and carbon black as main starting materials, thermoplastic phenolic resin as binder, hexamethylene tetramine as curing agent, Si powder (w(Si)>80%, particle size <0.074 mm) and B4C (d90=36.5 μm) as antioxidant, pressing under 200 MPa and drying at 200 ℃ for 24 h. The oxidation resistance tests were conducted at 600 ℃, 1 000 ℃ and 1 400 ℃ for 2 h, respectively. Effects of B4C and Si antioxidant on oxidation resistance of low-carbon MgO-C brick were studied by comparing the areas of the decarburized layers. The results show that: (1) When Si powder addition is 3%, at 600 ℃ and 1 000 ℃, the specimens with 0.5% B4C perform good oxidation resistance; at 1 400 ℃, the oxidation resistance of the specimens is improved with the addition of B4C increasing, and that of the specimen with 0.7% B4C is the best. (2) When B4C addition is 0.5%, at 600 ℃ and 1 000 ℃,the oxidation resistances of the specimens with 3% and 5% Si powder are similar, which are better than that of the specimen with 1% Si powder; and at 1 400 ℃, the oxidation resistance of the specimens is improved obviously with the addition of Si powder increasing, and that of the specimen with 5% Si powder is the best. (3) Based on the results, it is believed that the low-carbon MgO-C brick with 0.5% B4C and 3% Si powder performs the best oxidation resistance.  相似文献   

6.
Three-dimensional carbon fiber reinforced silicon carbide (C/SiC) composites were fabricated by precursor infiltration and pyrolysis (PIP) with polycarbosilane as the matrix precursor, SiC coating prepared by chemical vapor deposition (CVD) and ZrB2-SiC/SiC coating prepared by CVD with slurry painting were applied on C/SiC composites, respectively. The oxidation of three samples at 1500 °C was compared and their microstructures and mechanical properties were investigated. The results show that the C/SiC without coating is distorted quickly. The mass loss of SiC coating coated sample is 4.6% after 2 h oxidation and the sample with ZrB2-SiC/SiC multilayer coating only has 0.4% mass loss even after oxidation. ZrB2-SiC/SiC multilayer coating can provide longtime protection for C/SiC composites. The mode of the fracture behavior of C/SiC composites was also changed. When with coating, the fracture mode of C/SiC composites became brittle. When after oxidation, the fracture mode of C/SiC composites without and with coating also became brittle.  相似文献   

7.
To improve the oxidation resistances of SiC coated C/C composites by a pack cementation (PC) method at high temperature and alleviate the siliconization erosion of molten silicon on C/C substrate during the preparation of SiC coating, a SiO2-SiC reticulated layer with SiC nanowires was pre-prepared on C/C composites through combined slurry painting and thermal treatment before the fabrication of SiC coating. The presence of porous SiO2-SiC layer with SiC nanowires was beneficial to fabricate a compact and homogeneous SiC coating resulting from synergistic effect of further reaction between SiO2 and pack powders and the reinforcement of SiC nanowires. Therefore, the results of thermal shock and isothermal oxidation tests showed that the mass loss of modified SiC coating was only 0.02 % after suffering 50-time thermal cycles between room temperature and 1773 K and decreased from 5.95 % to 1.08 % after static oxidation for 49.5 h in air at 1773 K. Moreover, due to the blocking effect of SiO2-SiC reticulated layer on siliconization erosion during PC, the flexural strength of SiC coated C/C composites with SiO2-SiC reticulated layer increased by 64.8 % compared with the untreated specimen.  相似文献   

8.
Biomorphic SiC composites were fabricated by infiltration of liquid Si into a preform fabricated from medium-density fiberboard (MDF). The phase compositions, microstructures, oxidation behaviors, and ablation properties of the composites were investigated. The composites were oxidized at elevated temperatures (up to 1450 °C) in air to study their oxidation behavior. Pores and cracks initially formed from the oxidation of residual carbon, followed by melting of residual Si. The ablation resistance of a composite was gauged using an oxy-acetylene torch. The formation of a SiO2 layer by the oxy-acetylene flame improved the ablation resistance because molten SiO2 spread over the ablated surface and partially sealed the pores, thus acting as an effective barrier against the inward diffusion of oxygen.  相似文献   

9.
A boron-containing SiHfC(N,O) amorphous ceramic was synthesized upon pyrolysis of a single-source-precursor at 1000 °C in Ar atmosphere. The high-temperature microstructural evolution of the ceramic at high temperatures was studied using X-ray powder diffraction, Raman spectroscopy, solid-state nuclear magnetic resonance spectroscopy and transmission electron microscopy. The results show that the ceramic consists of an SiHfC(N,O)-based amorphous matrix and finely dispersed sp2-hybridized boron-containing carbon (i.e. ByC). High temperature annealing of ByC/SiHfC(N,O) leads to the precipitation of HfCxN1-x nanoparticles as well as to β-SiC crystallization. After annealing at temperatures beyond 1900 °C, HfB2 formation was observed. The incorporation of boron into SiHfC(N,O) leads to an increase of its sintering activity, consequently providing dense materials possessing improved mechanical properties as compared to those of boron-free SiC/HfC. Thus, hardness and elastic modulus values up to 25.7 ± 5.3 and 344.7 ± 43.0 GPa, respectively, were measured for the dense monolithic SiC/HfCxN1-x/HfB2/C ceramic nano/micro composite.  相似文献   

10.
SiCN/borosilicate glass-B4C-Al2O3 coating was deposited on carbon fiber-reinforced carbon matrix (C/C) brake materials to protect them from oxidation. Microstructural analysis revealed that the coating was dense and uniform. Fabricated coating showed excellent oxidation resistance and significantly low weight losses after oxidation in dry air for 10?h than SiCN/borosilicate glass-B4C coated samples (ca. 0.12%, 0.51%, and 0.29% at 700, 800, and 900?°C, respectively). B4C is believed to react with the oxygen diffused into the coating to produce B2O3, which could heal cracks of the coating and improve its self-sealing ability and oxidation resistance. The Al2O3 present in the outer glass layer is believed to inhibit volatilization of B2O3, thereby reducing weight losses in air. Fabricated coating also possessed excellent oxidation resistance under fresh and sea water conditions, with cracks and pores generated during oxidization process being effectively healed. Prepared coating materials showed excellent thermal shock resistances after 50 thermal shock cycles, with weight losses being as low as 0.23%.  相似文献   

11.
Mullite-modified C/C-HfC-SiC composites were prepared via precursor infiltration and pyrolysis (PIP). The phase composition, microstructure, and cyclic ablation behavior under oxyacetylene flame with a heat flux of 4.18 MW/m2 were investigated, and a comparison with the C/C-HfC-SiC composites showed that the mullite-modified composites have better ablation resistance. Results displayed a HfO2 skeleton structure wrapped by SiO2 and a dense layer of HfO2-SiO2 in the center and transition regions after the first ablation for 30 s, respectively. The structures transformed into HfSiO4-wrapped carbon fibers and "island" shape HfO2-HfSiO4-SiO2 layer after the second ablation for 30 s. Then both structures underwent severer peeling of HfSiO4 and consumption of SiO2 after the third ablation for 30 s. The modified composites exhibited better mass ablation rates after forming HfSiO4, which were 0.36 mg/s cm2 and 0.38 mg/s cm2, respectively.  相似文献   

12.
Phase stability diagrams for the carbothermal reduction of a mixture of TiO2 and WO3 at 1500 K were constructed as a function of the carbon activity, oxygen pressure and characteristics of solution formation. Through this, it was found that the stable domains of carbides/carbonitrides, including (Ti,W)C/(Ti,W)(CN), are larger than the phases that are formed when solid-solution phases are not considered due to their greater stability. The use of a nitrogen atmosphere instead of vacuum expanded the stable domains of the solid-solution phases, indicating that they are made more stable under these conditions. Using these stability diagrams, the reaction sequence of carbothermal reduction can be predicted, and so this study can provide a guideline for preparing tougher carbide/carbonitride (Ti,W)C/(Ti,W)(CN) phases from TiO2/WO3 mixtures.  相似文献   

13.
The self-healing SiCf/SiC-SiBCN composites with various boron contents in SiBCN were prepared, and their long-term oxidation behaviors and strength retention properties were investigated. The 100 h oxidation at 1200–1350 °C leads to parabolic mass gain of the obtained composites. With the oxidation temperature increased from 1200 °C to 1350 °C, the oxidation rate constants increase from 5.91 × 10?8 mg2/(mm4 h) to 9.31 × 10?7 mg2/(mm4 h) for the boron-lean (3.14%) composites, and from 2.57 × 10?7 mg2/(mm4 h) to 6.04 × 10?7 mg2/(mm4 h) for the boron-rich (7.18 wt%) composites. Correspondingly, the oxidation activation energy decreases from 363 kJ/mol to 112 kJ/mol due to the low initial oxidation temperature of boron-rich SiBCN. All the composites exhibit the higher strength retention rates after 1350 °C oxidation due to the enhanced self-healing performance. The boron-rich composites show a high strength retention rate of up to 104% due to the good self-healing capacity of the boron-rich SiBCN as well as the high CVI-SiC content.  相似文献   

14.
Si3N4/SiC nanocomposite materials are of great interest for structural applications at high temperature. In silicon nitride based ceramics, the small size and the spherical shape of the grains constituting the material are two important parameters in favour of high temperature deformation. Therefore, SiCN nano-sized powders are real candidates as starting materials to elaborate dense Si3N4/SiC nanocomposites exhibiting the microstructure required for ductility at high temperature. SiCN nanopowders with different chemical compositions and characteristics can be prepared by CO2 laser pyrolysis of organosilicon precursors. Laser pyrolysis of gaseous precursors is able to produce partly crystallised SiCN nanoparticles exhibiting a reasonable thermal stability and suitable for elaboration of ceramic materials. In order to reduce the cost and to improve the safety of the process, an aerosol generated from a liquid precursor, hexamethyldisilazane (HMDS), has also been used to synthesised SiCN nanopowders. However, in this latter case the powders obtained exhibit a high weight loss during heat treatment at high temperature. Therefore, in this study the effects of various synthesis parameters (chemical nature of the precursor and laser power) on the degree of crystallisation and on the thermal stability of nanopowders are investigated. Characteristics of powders such as chemical composition, morphology, structure and thermal stability are reported. A correlation between the synthesis conditions of powders and their thermal stability is established, and the synthesis parameters enabling improvement of thermal stability are determined.  相似文献   

15.
The present research effort was undertaken to develop a new generation of SiC fiber- reinforced engineered ceramic matrix composites (E-CMCs). In contrast to traditional CMCs with a brittle SiC matrix, an E-CMC is designed to consist of a matrix engineered to possess sufficient high temperature plasticity to minimize crack propagation, relatively high fracture toughness, and self-healing capabilities to prevent oxygen ingress to the BN-coated fibers through surface-connected cracks. The present paper discusses the bend strength, isothermal oxidation, microstructures and self-healing properties of several silicide-behaved engineered matrices. Based on the oxidation tests, where it was observed that some of the matrices exhibited either catastrophic oxidation (“pesting”) or spalling of the oxide scale, two engineered matrices, CrSi2/SiC/Si3N4 and a CrMoSi/SiC/Si3N4, were down-selected for further investigation. Four-point bend tests were conducted on these two engineered matrices between room temperature and 1698 K. Although these matrices were brittle at low temperatures, it was observed that the bend strengths and bend ductility increased at high temperatures as the silicide particles became more ductile, which was qualitatively consistent with the theoretically expected behavior that crack blunting at these particles should increase the matrix strength. Additional studies were conducted to study the effects of different additives on the self-healing properties of the engineered matrices, which helped to identify the most effective additives.  相似文献   

16.
《Ceramics International》2017,43(12):8989-8998
Cobalt (Co) was chosen as an additive to improve the ablation resistance of WC coating for SiC coated C/C composites, SiC modified WC coating and pure WC coating which were prepared and tested for comparative purposes. Results showed that the thermal shock resistance of WCC (WC-10%Co) coating was better than pure WC coating and WCS (WC-10%SiC) coating. Furthermore, the produced oxide layer on WCC coating was found to be more stable due to the reaction of CoO and WO3. As a result, during oxyacetylene torch ablation test, compared with pure WC coating and WCS coating, WCC coating keeps excellent dimensional stability with the linear ablation rate decreased by 67% and 62%, respectively, showing a significant improvement of the ablation resistance.  相似文献   

17.
In order to improve the ablation resistance of C/C-ZrC-SiC composites by reducing the damage of the protective oxide layer, novel "Z-pins like" silicon rods, which were designed and fabricated by liquid phase sintering, were utilised as a dissipative agent. The microstructure evolution and thermal dissipation behaviour were investigated after ablating above 2500 °C for 300 s. After the "Z-pins like" silicon rods were implanted, the anti-ablative property of the C/C-ZrC-SiC composites was drastically improved by the dissipative thermal protection mechanism. The linear ablation rate of the "Z-pins like" silicon rod-reinforced C/C-ZrC-SiC composite was -0.28 μm/s, which is 112.72% lower than the unmodified composite. Additionally, the actual ablative temperature dropped approximately 357 °C, which enabled abundant SiO2 to remain in the ablation centre. Furthermore, a dense SiO2-rich oxide layer with a low oxygen diffusion coefficient is formed that covers the entire ablative surface.  相似文献   

18.
The initial oxidation behavior of ZrB2–30 vol% SiC was analyzed with the goal of understanding any relationship to the variable oxidation performance observed at longer times. A box furnace was used to oxidize samples for times as short as 10 s and up to 100 min at 1500°C in air. The samples were characterized using mass change, scanning electron microscopy, energy dispersive spectroscopy, X‐ray diffraction, and X‐ray photoelectron spectroscopy to explore the oxidation behavior. The presence of borosilicate glass and ZrO2 was observed on the surface at times as early as 10 s. Bubble formation in the borosilicate glass was observed after 30 s of oxidation and is attributed to uneven distribution of the glass. The impact of surface roughness on oxidation was also explored and found to be negligible for times greater than 30 s.  相似文献   

19.
This work explores the potentials of SiC fiber reinforced SiC matrix composites (SiCf/SiC) with SiC coating to resist aerodynamic ablations for thermal protection purpose. A plasma wind tunnel is employed to evaluate their anti-ablation property in dissociated air plasmas. The results suggest a critical ablation temperature of SiC coated SiCf/SiC, ≈ 1910 °C, which is the highest ever reported in literatures. Benefited by ‘all-SiC’ microstructures and relative flat ablated surfaces, the SiCf/SiC is still ablation-resistant up to ≈ 1820 °C after the occurrence of ablation. This implies an excellent ablation resistance and reusability property of SiCf/SiC, which surpasses that of traditional carbon fiber reinforced composites. Finally, an ablation mechanism dominated by surface characteristic is proposed. For the SiC coated SiCf/SiC, ablation is prone to take place at surface cracks formed by thermal mismatch; while for the ablated SiCf/SiC, ablation is triggered at the exposed fiber bundles which is over-heated in the plasmas.  相似文献   

20.
《Ceramics International》2020,46(6):7055-7064
In this work, ablation properties of NbC and NbC-25 mol.% ZrC coating, deposited on SiC-coated C/C composites by supersonic atmospheric plasma spraying, were tested by an oxyacetylene torch. Results showed that, for NbC coating, an unexpected smooth liquid film mostly composed of niobium suboxides (such as NbO2 and NbO), rather than pure Nb2O5, generated during ablation for 45 s. Mechanical erosion resulted from the molten SiO2, and the relatively low viscosity of the outer oxide layer owing to insufficiently high melting point of niobium suboxides were the key factors for the failure mechanism of NbC coating. While NbC–ZrC coating abated for 90 s has a 97.49 and 66.53% decrease of linear and mass ablation rate relative to NbC coating ablated for 45 s, since ZrO2 hindering the evaporation of SiO2 droplets, and more thermal-stable Nb–O–Zr liquid film endow (NbC–ZrC)/SiC/C/C composites with an outstanding anti-ablation property.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号