首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2022,48(20):29547-29553
Red light-emitting phosphors are important to the field of plant lighting. Therefore, it is necessary to further optimize phosphor materials. Herein, we synthesized a sequence of phosphor LaTiSbO6:Mn4+ (LTS:Mn4+). Due to the 2E to 4A2 transition, LTS:Mn4+ phosphors can emit red light in the range of 620–780 nm, with an emission peak at 687 nm. Chemical unit cosubstitution (substituting W6+ - Al3+/W6+ - Ga3+ for Ti4+ - Sb5+) was used as a method to enhance the luminescence properties of LTS:Mn4+. When the substitution ratio of W6+ - Ga3+ and W6+ - Al3+ reached 0.1% and 0.75%, respectively, the luminescence intensity increased to 204% and 182%. Using the LTS:Mn4+, W6+, Ga3+ phosphor and a 470 nm blue chip to fabricate a pc-LED device, the electroluminescence (EL) spectrum is well matched with the phytochrome absorption range. Therefore, the LTS:Mn4+ phosphor will be very promising for plant growth.  相似文献   

2.
Ti4+-activated zinc calcium aluminate phosphors, owing to their excellent luminescence properties, nontoxicity, environment friendliness and low price, have a certain prospect in the field of plant cultivation. In this study, we have successfully synthesized a series of Ca14-yAl10-xZn6-zO35:xTi4+ (CAZO:Ti4+) phosphors through a high-temperature solid-state method. Furthermore, the emission spectrum of CAZO:Ti4+ located in bluish violet-emitting band, and has an emission peak at 378?nm upon the excitation of 268?nm due to the charge transfer of Ti4+-O2-. Moreover, the luminescence intensity of as-synthetized phosphors can be improved by cation vacancies engineering to compensate for charge unbalance. Especially, the luminescence intensity could be further improved when the Ca2+ vacancy is 0.35?mol or the Zn2+ vacancy is 0.275?mol. Furthermore, the X-ray powder diffraction (XRD) analysis and crystal structure are checked and confirmed that the synthesized material is pure phase. The concentration quenching mechanism, FT-IR spectra, UV–vis absorption properties, lifetimes and electron transition process of Ca14-yAl10-xZn6-zO35: xTi4+ were discussed in detail. From the above, the phosphor has a potential application for plant growth field due to its broad bluish violet emission.  相似文献   

3.
Deep-red light emitting phosphors are widely used in LEDs for indoor plant growth because of the critical role played by red light in plant growth. The luminescence properties of deep-red phosphors are still not well understood at present. An energy transfer strategy is a common and effective method to improve luminescence properties. In principle, the energy transfer process may occur when the sensitizer's emission spectra overlap with the activator's excitation spectra. In this work, Bi3+ and Mn4+ were incorporated into the matrix of Gd2MgTiO6 as sensitisers and activators, respectively. Mn4+ ions tend to occupy the [TiO6] octahedral site and the Bi3+ ions are expected to substituted in the site of Gd3+. The energy transfer process from Bi3+ to Mn4+ was realised and the photoluminescence (PL) intensity of Mn4+ increased with the doping content of Bi3+. Upon excitation at 375 nm, the PL intensity of Mn4+ increased to 116.4% when the doping concentration of Bi3+ reached 0.3%. Finally, the pc-LED devices were prepared by a Gd2MgTiO6:Bi3+, Mn4+ phosphor. The high red luminescence indicated that this phosphor has potential applications in indoor LED lighting.  相似文献   

4.
A novel Mn4+-doped strontium lanthanum gallate red phosphor SrLaGaO4:Mn4+ has been successfully prepared via the conventional solid-state reaction method. Phase purity, photoluminescence excitation/emission spectra, concentration quenching, decay curves, and temperature-dependent photoluminescence have been investigated systematically. SrLaGaO4:Mn4+ phosphor exhibits broad excitation band from 250 to 600 nm and emits intense red light centered at 716 nm arising from spin-forbidden transition, 2E → 4A2 of Mn4+. The optimal dopant concentration of Mn4+ is determined to be 0.2 mol%. Dipole-dipole interaction is supposed to be the mechanism of concentration quenching. The crystal-field strength Dq, the Racah parameters B and C, and the nephelauxetic ratio β1 of SrLaGaO4:Mn4+ have been calculated according to its luminescent spectra. Our systematic investigation on this new phosphor can provide a reference for the development of red-emitting phosphor.  相似文献   

5.
The Mn4+ activated fluostannate Na2SnF6 red phosphor was synthesized from starting materials metallic tin shots, NaF, and K2MnF6 in HF solution at room temperature by a two‐step method. The formation mechanism responsible for preparing Na2SnF6:Mn4+ (NSF:Mn) has been investigated. The influences of synthetic parameters: such as concentrations of HF and K2MnF6 in reaction system, reaction time, and temperature on crystallinity, microstructure, and luminescence intensity of NSF:Mn have been investigated based on detailed experimental results. The actual doping concentration of Mn4+ in the NSF:Mn host lattice is less than 0.12 mol%. The most of K2MnF6 is decomposed in HF solution especially in hydrothermal system at elevated temperatures. The color of the as‐prepared NSF:Mn samples changes from orange to white when the temperature is higher than 120°C, which indicates the lower concentration of luminescence centers in the crystals. A series of “warm” white light‐emitting diodes with color rendering index (CRI) higher than 88 and correlated color temperatures between 3146 and 5172 K were obtained by encapsulating the as‐prepared red phosphors NSF:Mn with yellow one Y3Al5O12:Ce3+ (YAG:Ce) on 450 nm blue InGaN chips. The advantage of the synthetic strategy to obtain NSF:Mn can be extended to developing Mn4+‐doped red phosphors from low‐costing metals at room temperature for large‐scale industrial applications.  相似文献   

6.
Artificial light source for indoor cultivation has been vastly impeded by the lack of high far red emitting phosphors. Recently, Mn4+ activated phosphors were reported to be promising luminescent materials to solve above matter. In this study, controllable design of Ca14Al10Zn6O35:0.15Mn4+ (CAZO:0.15Mn4+) far red emitting phosphors was realized via pH assisted hydrothermal approach. The pure CAZO:0.15Mn4+ phosphors were obtained merely when the reaction pH was 1 or 2. Meanwhile, by adjusting the pH value of the reaction solution, far red emission CAZO:0.15Mn4+ phosphors with grains, sphere-like as well as aggregated bulk particles can be achieved at pH =?4, pH =?6 and pH =?10, respectively. Furthermore, the structures and morphologies depended photoluminescence (PL) performances of CAZO:0.15Mn4+ were checked. The best PL performance was found for the phosphor produced at pH =?6, while over acidic or alkaline conditions would lower the emission intensity. In addition, this phosphor also exhibit good thermal resistance which can maintain 78% initial intensity at 150?°C. The practical indoor tobacco cultivation demonstrated that CAZO:0.15Mn4+ obtained through this pH adjusted hydrothermal route is a promising phosphor for indoor plant growth lighting.  相似文献   

7.
A novel deep-red-emitting phosphor Ca2ScNbO6:Mn4+ is prepared via a high-temperature solid-state reaction and its luminescent properties are systematically investigated. The results show that Mn4+-activated Ca2ScNbO6 phosphors have broad absorption in ultraviolet region, and show bright deep-red emission at 692 nm. The optimal doping concentration, crystal-field strength, internal quantum efficiency, and mechanism of concentration and thermal quenching effects are discussed in detail. Moreover, NaF flux is screened out to improve both luminescent intensity and morphology of the phosphor. Finally, a red light-emitting diode (LED) lamp is fabricated with as-prepared Ca2ScNbO6:Mn4+ phosphors and a 365 nm LED chip. The electroluminescence spectra show a good overlapping with phytochrome PR and PFR absorbance. The results provided the as-synthesized Ca2ScNbO6:Mn4+ phosphors a great potential in plant growth lighting.  相似文献   

8.
A novel non‐rare‐earth doped phosphor La2MgGeO6:Mn4+ (LMG:Mn4+) with near‐infrared (NIR) long persistent luminescence (LPL) was successfully synthesized by solid‐state reaction. The phosphors can be effectively excited using ultraviolet light, followed by a sharp deep‐red emission peaking at 708 nm, which is originated from 2Eg → 4A2g transition of Mn4+ ions. The luminescent performance was analyzed by photoluminescence (PL) and photoluminescence excitation (PLE) spectra. The crystal field parameters were calculated to describe the environment of Mn4+ in LMG host. The LPL behaviors as well as the mechanisms were systematically discussed. This study suggests that the phosphors will broaden new horizons in designing and fabricating novel NIR long phosphorescent materials.  相似文献   

9.
As for plants, far-red (FR) light with wavelength from 700 nm to 740 nm is critical for processes of photosynthesis and photomorphogenesis. Light-controlled development depends on light to control cell differentiation, structural and functional changes, and finally converge into the formation of tissues and organs. Phosphor converted FR emission under LED excitation is a cost-effective and high-efficient way to provide artificial FR light source. With the aim to develop an efficient FR phosphor that can promote the plant growth, a series of gadolinium yttrium gallium garnet (GYGAG) transparent ceramic phosphors co-doped with Mn2+ and Si4+ have been fabricated via chemical co-precipitation method, followed sintered in O2 and hot isostatic pressing in this work. Under UV excitation, the phosphor exhibited two bright and broadband red emission spectra due to Mn2+: 4T1 → 6A1 spin-forbidden transition, and one of which located in the right FR region. And then, Ce3+ ions were co-doped as the activator to enhance the absorption at blue light region and the emission of Mn2+. It turns out that the emission band of GYGAG transparent ceramic phosphors matches well with the absorption band of phytochrome PFR, which means they are promising to be applied in plant cultivation light-emitting diodes (LEDs) for modulating plant growth. Besides, the thermal stability of this material was investigated systematically, and an energy transferring model involves defects was also proposed to explain the phenomenon of abnormal temperature quenching.  相似文献   

10.
《Ceramics International》2023,49(8):12088-12096
Mn4+ activated fluoride red phosphors, as candidate red materials in white light-emitting diodes (WLEDs), have received widespread attention. However, the poor water stability limits their application. Herein, a novel dodec-fluoride red phosphor Na3Li3In2F12:Mn4+ with good waterproof stability was successfully synthesized by solvothermal method. The crystal structure, optical property, micro-morphology, element composition, waterproof property and thermal behavior of Na3Li3In2F12:Mn4+ phosphor were analyzed. Under the 468 nm blue light excitation, the Na3Li3In2F12:Mn4+ phosphor has narrow emission bands in the area of 590–680 nm. Compared with commercial red phosphor K2SiF6:Mn4+, the Na3Li3In2F12:Mn4+ phosphor possesses better waterproof stability. When soaked in water for 360 min, the PL intensity of the Na3Li3In2F12:Mn4+ phosphor remains at initial 80%. Finally, warm WLEDs with CRI of 87 and CCT of 3386 K have been fabricated using blue InGaN chip, YAG:Ce3+ yellow phosphor and Na3Li3In2F12:Mn4+ red phosphor.  相似文献   

11.
The SrSi2O2N2:Eu2+ green-emitting phosphor, as a member of oxynitride phosphors, could greatly enhance the color quality of the white-light conversed by single yellow-emitting phosphor. However, SrSi2O2N2:Eu2+ phosphors prepared by traditional solid-state ways normally consist hard agglomerates with unevenly dispersed particles and therefore suppress the luminescence properties. This research proposes a heterogeneous precipitation protocol where precipitation process is introduced, in order to produce a precursor in the first phase. And in the second phase, a high-temperature solid-state process is adopted for obtaining the final product. The main results show that, for an optimized SrSi2O2N2:Eu2+ phosphor prepared using our protocol, (1) the SrSi2O2N2:Eu2+ particles are faceted and with smooth faces and (2) the phosphor photoluminescence, external quantum efficiency, stability against thermal exposure, and physical stability consistently outperform the current commercially used product. This research essentially provides an economic way for production of solid-state lighting with enhanced color quality.  相似文献   

12.
Thermally robust red-emitting phosphor ceramics are urgently required for laser lighting and displays with high luminance and better color saturation. The most promising CaAlSiN3:Eu ceramics have a low thermal conductivity of 4.2 W m?1 K?1 and a small luminance saturation of 0.5 W, making it hard to be used under high power laser irradiation. In this work, we incorporated AlN into the CaAlSiN3:Eu ceramic to produce red-emitting AlN-CaAlSiN3:Eu composite phosphor ceramics by spark plasma sintering. The fully densified phosphor ceramics have the highest thermal conductivity reported so far (53.5 W m?1 K?1), which is about 13 times higher than the reported one. The luminance saturation of the composite ceramics occurs at a high threshold of 4.2 W under blue laser excitation, enabling them to be used for high power laser lighting. This work provides an idea of tackling the microstructure of nitride phosphor ceramics and of preparing thermally robust red-emitting color converters.  相似文献   

13.
《Ceramics International》2021,47(23):33172-33179
K2SiF6:Mn4+ (KSF:Mn4+), as an efficient red-emitting phosphor, has a promising application in WLEDs (white light-emitting diodes). However, poor moisture resistance performance still hinders its deeper commercialization. Here, KSF:Mn4+@ CaF2 with high water resistance and luminescent thermal stability has been prepared though H2O2-free hydrothermal method and surface coating process. Both KSF:Mn4+ and KSF:Mn4+@CaF2 all have high luminescent thermal stability, due to negative thermal quenching (NTQ) effect. Mechanism of the NTQ has been discussed and suggested as thermal-light energy conversion mechanism. Compared with KSF:Mn4+, water resistance of KSF:Mn4+@CaF2 is greatly improved by coating of CaF2, because the outer shell of CaF2 can effectively prevent the [MnF6]2- group on the surface of the phosphor from being hydrolyzed into MnO2. The results of water resistance test shows that after immersing in water for 360 min (6 h), luminescent intensity of the uncoated product drops to 41.68% of the initial one, while that of the coated product remains to have 88.24% of its initial one. Warm white light with good luminescent performances (CCT = 3956 K and Ra = 89.3) is got from prototype WLEDs assembled by using the optimal coated sample. The results suggest that the optimal coated sample has potential application in blue-based warm WLEDs.  相似文献   

14.
《Ceramics International》2023,49(15):24972-24980
Phosphor-converted light-emitting diodes (pc-LEDs) are commonly used to regulate the light environment to control the growth rates and improve the production efficiency of plant. Among them, the exploration of blue-emitting phosphors with high efficiency, low thermal quenching and excellent spectrum resemblance matching with the plant response spectrum is still challenging. Herein, a narrow-band blue-emitting Rb2Ba3(P2O7)2:Eu2+ phosphor with high color purity of 93.4% has been developed. Under 345 nm excitation, it exhibits a blue emission band centered at 413 nm with a full width at half-maximum (FWHM) of 36 nm, and the emission spectrum of Rb2Ba3(P2O7)2:0.060Eu2+ sample shows 85.7% spectrum resemblance with the absorption spectrum of chlorophyll-a in the blue region from 400 to 500 nm. In addition, the temperature-dependent emission spectra demonstrate that the Rb2Ba3(P2O7)2:0.060Eu2+ phosphor has good thermal stability and small chromaticity shift, with the emission intensity dropping to 72.5% at 423 K of the initial intensity at 298 K and a chromaticity shift of 38 × 10-3 at 498 K. All results suggest that the blue-emitting Rb2Ba3(P2O7)2:Eu2+ phosphor has potential application in plant growth LEDs.  相似文献   

15.
16.
《Ceramics International》2016,42(12):13648-13653
A series of Li3Ba2Y3−x(WO4)8:xEu3+ (x=0.1, 1, 1.5, 2 and 2.8) phosphors were synthesized by a high temperature solid-state reaction method. Under the excitation of near ultraviolet (NUV) light, the as-prepared phosphor exhibits intense red luminescence originating from the characteristic transitions of Eu3+ ions, which is 1.8 times as strong as the commercial Y2O2S:Eu3+ phosphor. The optimal doping concentration of Eu3+ ions here is confirmed as x=1.5. The electric dipole-quadrupole (D-Q) interaction is deduced to be responsible for concentration quenching of Eu3+ ions in the Li3Ba2Y3(WO4)8 phosphor. The analysis of optical transition and Huang-Rhys factor reveals a weak electron-phonon coupling interaction. The temperature-dependent emission spectra also indicate that the as-prepared Li3Ba2Y3(WO4)8:Eu3+ phosphor has better thermal stability than that of the commercial Y2O2S:Eu3+ phosphor. Therefore, our results show that the as-prepared Li3Ba2Y3(WO4)8:Eu3+ phosphor is a promising candidate as red emitting component for white light emitting diodes (LEDs).  相似文献   

17.
Rare earth ions’ site occupation is significant for studying luminescence properties by changing the host composition. The (Ba1-xSrx)9Lu2Si6O24:Eu2+ (x = 0-0.4) tunable-color phosphors were synthesized via a high temperature solid-state reaction. With the Sr2+ ions concentration increase, the luminescent color could be tuned from blue to green. This phenomenon is discussed in detail through the ions occupation in the host lattice. More importantly, the temperature-dependent luminescence of (Ba1-xSrx)9Lu2Si6O24:Eu2+ phosphors was investigated and exhibited excellent thermal stability. Furthermore, white LED device has been fabricated using (Ba1-xSrx)9Lu2Si6O24:Eu2+ phosphor mixed with commercial red phosphor Sr2Si5N8:Eu3+ combined with a 370 nm UV-chip. This device showed correlated color temperature (CCT) of 5125 K and high color render index (CRI) of 91. This phosphor will be a promising candidate as a tunable-color phosphor for UV-based white LEDs.  相似文献   

18.
In this work, we report a novel phosphor LSPO:Mn2+ that exhibits red emission at about 616 nm and pleasant broad near-infrared (NIR) emission at about 800 nm with a full width at half maximum (fwhm) of 112 nm. The structure and spectra show that the doped manganese ions occupy two kinds of Sc sites forming Mn1 and Mn2 emission centers, which are responsible for red and NIR emission, respectively. The XPS and low-temperature fluorescence spectra reveal that both red and NIR emissions come from the Mn2+ ions. Besides, NIR luminescence is improved by doping Yb3+ in LSPO:Mn2+, leading to the broadened NIR emission range (700-1100 nm) and enhanced luminescent thermal stability. Our results suggest that the prepared LSPO:Mn2+ and LSPO:Mn2+,Yb3+ phosphors offer the potential applications as red and NIR components in phosphor-converted white-light-emitting diodes (pc-WLED) and broadband NIR pc-LED. Meanwhile, this work provides a new way to design novel broadband NIR phosphors.  相似文献   

19.
《Ceramics International》2022,48(8):10895-10901
Mn4+ doped phosphors have been attracted more and more attention because their emitting spectra can be absorbed by chlorophyll or phytochrome (Pr and Pfr) of plants. Herein, we prepared a new series of phosphors BaLaLiTe1-xO6:xMn4+ (BLLT:xMn4+, x = 0.002–0.014) by solid state reaction method. Their structure and phase purity were verified by X-ray diffraction (XRD) analysis. Under 336 nm exciting, BLLT:xMn4+ can emit long wavelength red light at around 700 nm, which fits well with the Pfr spectra of plants. The Mn4+ concentration was optimized to be x = 0.01, and when it was exceeded, concentration quenching would occur. The internal (IQE) and external quantum efficiency (EQE) of BLLT:0.01Mn4+ were measured to be 32% and 23% by direct method. Besides, the BLLT:0.01Mn4+ possesses good thermostability, remaining 76% of the integrated intensity at 423 K of that at 298 K. Hence, we think BLLT:0.01Mn4+ have potentially applications for plant growth LED.  相似文献   

20.
A series of Cs2BF6:Mn4+ (B = Ge, Si, Ti, Zr) red phosphors were synthesized by a precipitation-cation exchange route. The phase purity, morphology, and constituent were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Optical properties were investigated by photoluminescence (PL) spectra and high-resolution PL. Temperature-dependent PL examination at the range of both 273-573 K and 10-300 K was performed to investigate the emission mechanism of Mn4+ in these fluorides. The intensity for both zero-phonon lines (ZPLs) and vibration coupled emission of Mn4+ in these four systems with different crystal structures was investigated systematically. These phosphors present bright red emission under blue light (467 nm) illumination, among which Cs2GeF6:0.1Mn4+ shows the highest emission intensity with ultrahigh quantum efficiency of 94%. The white light-emitting diodes (WLEDs) fabricated with this sample, blue InGaN chips and commercial YAG:Ce3+ phosphor exhibited high luminous efficacy beyond 100 lm/w with high color rendering index (~88.6) and low color temperature (~3684 K).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号