首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
The TiO2 ceramics were prepared by a solid-state reaction in the temperature range of 920–1100 °C for 2 h and 5 h using TiO2 nano-particles (Degussa-P25 TiO2) as the starting materials. The sinterability and microwave properties of the TiO2 ceramics as a function of the sintering temperature were studied. It was demonstrated that the rutile phase TiO2 ceramics with good compactness could be readily synthesized from the Degussa-P25 TiO2 powder in the temperature range of 920–1100 °C without the addition of any glasses. Moreover, the TiO2 ceramics sintered at 1100 °C/2 h and 920 °C/5 h demonstrated excellent microwave dielectric properties, such as permittivity (Ɛr) value >100, Q × f  > 23,000 GHz and τf  200 ppm/°C.  相似文献   

2.
《Ceramics International》2022,48(24):36433-36440
Microwave dielectric ceramics with simple composition, a low permittivity (εr), high quality factor (Q × f) and temperature stability, specifically in the ultrawide temperature range, are vital for millimetre-wave communication. Hence, in this study, the improvements in sintering behavior and microwave dielectric properties of the SnO2 ceramic with a porous microstructure were investigated. The relative density of the Sn1-xTixO2 ceramic (65.1%) was improved to 98.8%, and the optimal sintering temperature of Sn1-xTixO2 ceramics reduced from 1525 °C to 1325 °C when Sn4+ was substituted with Ti4+. Furthermore, the εr of Sn1-xTixO2 (0 ≤ x ≤ 1.0) ceramics increased gradually with the rise in x, which can be ascribed to the increase in ionic polarisability and rattling effects of (Sn1-xTix)4+. The intrinsic dielectric loss was mainly controlled by rc (Sn/Ti–O), and the negative τf of the SnO2 ceramic was optimised to near zero (x = 0.1) by the Ti4+ substitution for Sn4+. This study also explored the ideal microwave dielectric properties (εr = 13.7, Q × f = 40,700 GHz at 9.9 GHz, and τf = ?7.2 ppm/°C) of the Sn0.9Ti0.1O2 ceramic. Its optimal sintering temperature was decreased to 950 °C when the sintering aids (ZnO–B2O3 glass and LiF) were introduced. The Sn0.9Ti0.1O2-5 wt% LiF ceramic also exhibited excellent microwave dielectric properties (εr = 12.8, Q × f = 23,000 GHz at 10.5 GHz, and τf = ?17.1 ppm/°C). At the ultrawide temperature range (?150 °C to +125 °C), the τε of the Sn0.9Ti0.1O2-5 wt% LiF ceramic was +13.3 ppm/°C, indicating excellent temperature stability. The good chemical compatibility of the Sn0.9Ti0.1O2-5 wt% LiF ceramic and the Ag electrode demonstrates their potential application for millimetre-wave communication.  相似文献   

3.
The Zn1.8SiO3.8 (ZS) ceramics with BaCu(B2O5) (BCB) additive were synthesized by the conventional solid-state reaction route and the effect of BCB additive on the microwave dielectric properties of the ceramics was investigated. The results demonstrate that BCB could effectively decrease the sintering temperature from 1300?°C to 930?°C and does not induce obviously degradation of the microwave dielectric properties. The 6.wt% BCB added ZS ceramics exhibited a low sintering temperature (~ 930?°C) and excellent dielectric properties of εr =?6.79, Q×f =?33,648?GHz, and τf =??30?ppm/°C. To compensate the negative τf value of this system, TiO2 powders were introduced. Particularly when 10.wt% TiO2 was added, good microwave dielectric properties of εr=?8.175, Q×f=?21,252?GHz, and τf =?1.2?ppm/°C were obtained for the 6.wt% BCB added ZS ceramic sintered at 930?°C for 3?h. Moreover, BCB added ZS-TiO2 ceramics have a chemical compatibility with silver, which indicate that the BCB added ZS ceramics are promising candidate for LTCC applications.  相似文献   

4.
《Ceramics International》2017,43(9):6659-6665
In the present work, the synergistic effect of Li2O-B2O3-SiO2 glass (LBS) and La2O3-B2O3 (LaB) addition on the wetting behavior, activation energy, phase composition, microstructure and microwave dielectric properties of the BaO-0.15ZnO-4TiO2 ceramic (Ba-Zn-Ti) has been investigated to understand the low temperature mechanism of the sintering kinetic. The results show that co-doping with LBS and LaB decreases the activation energy and therefore accelerates the sintering process of the Ba-Zn-Ti due to the liquid phase formed at a low sintering temperature. Moreover, the co-doping of LBS and LaB restrains the appearance of BaTi(BO3)2 caused by the reaction of Ba-Zn-Ti and LBS, which has a deleterious effect on the densification and microwave dielectric properties of Ba-Zn-Ti. With LBS and LaB co-doped, the sintering temperature of Ba-Zn-Ti significantly dropped from 1150 °C to 850–900 °C and remained excellent microwave dielectric properties.  相似文献   

5.
The paper presents the fabrication procedure, microstructure and dielectric properties of the low temperature cofired ceramics (LTCC) based on Zn2SiO4 doped with AlF3, CaB4O7, Li2TiO3 and MgTiO3. The heating microscope studies and differential thermal analysis were used for characterization of the behavior of the green tapes and ceramic samples during heating up to high temperatures. The microstructure and composition were analyzed by scanning electron microscopy, X-ray energy dispersive spectroscopy and XRD method. The dielectric properties were investigated in three frequency regions: 100 Hz–2 MHz, 90–140 GHz and 0.15–3 THz. The developed materials are promising candidates for the LTCC submillimeter wave applications due to a low sintering temperature of 900–980 °C, good compatibility with silver pastes and good dielectric properties – a low dielectric permittivity of 6–6.8, a relatively low dissipation factor of 0.005–0.008 at 1 THz, and a weak temperature dependence of dielectric permittivity.  相似文献   

6.
An interesting attempt to develop low temperature sintering glass-ceramic/ceramic composite based on La2O3-B2O3-CaO (LBC) glass-ceramic and LaBO3 ceramic, which was reported to be the main crystalline phase precipitated from La2O3-B2O3-based glass-ceramics, has been taken. The sintering behavior, phase evolution, microstructures and dielectric properties of LBC/LaBO3 composites have been studied. The densification of LBC/LaBO3 composite is achieved by partially reactive sintering. The LaBO3 filler is directly involved in the sintering process of glass/ceramic composite as additional liquid phase provider at high sintering temperature, and it will suppress the formation of other crystalline phases so that the produced LBC/LaBO3 composites exhibit unusual simple phase structures, which is beneficial to regulate the performance of composites. LBC/LaBO3 composite with 50 wt% LaBO3 sintered at 950 ºC for 2 h has a dielectric constant εr = 10.12, a dielectric loss tanδ = 1.82 × 10―3, a Q × f = 9312 GHz (at 16.95 GHz), and shows good chemical compatibility while co-firing with Ag electrode. This indicates that LBC glass/LaBO3 ceramic composites have a potential to meet the requirements of microwave LTCC applications.  相似文献   

7.
To satisfy the requirements of miniaturization and integration of microwave devices, microwave dielectric ceramics with low sintering temperatures and good microwave dielectric properties are particularly important for LTCC materials. In this study, low-cost BaB2O4 ceramics were prepared with different Ba/B ratios using a solid-phase method. Combined with the Raman spectra, the effects of the Raman shift and FWHM of the vibration peaks on the microwave dielectric properties were determined. As a novel microwave dielectric ceramic, BaB2O4 consists of a highly dense structure with optimal microwave dielectric properties (εr = 4.06, Q×f = 23845 GHz, and τf = −7.2 ppm/℃) at a low sintering temperature (840 ℃). In addition, BaB2O4 ceramic is chemically compatible with Ag, making it a promising candidate substrate for microwave communications.  相似文献   

8.
《Ceramics International》2022,48(14):20332-20340
Li3PO4 ceramic is a promising microwave ceramic material with low dielectric constant. The effect of Li nonstoichiometry on phase compositions, microstructures, and microwave dielectric characteristics of Li3PO4 ceramics, on the other hand, has been examined infrequently. Therefore, in the first part of this study, the stoichiometry and Li nonstoichiometry compositions based on Li3+xPO4(x = 0, 0.03, 0.06, 0.09, 0.12 and 0.15) were prepared by conventional solid-phase method. The results show that a few nonstoichiometric lithium ions enter the lattice of Li3+xPO4. Compared with the chemical content of Li3PO4, the sintering characteristics, relative dielectric constants and quality factors of Li3+xPO4 ceramics can be improved by slightly excessive Li ions, while the properties of Li3PO4 ceramics can be deteriorated by excessive Li ions. Li3.12PO4 ceramics sintered at 975 °C for 2 h have good dielectric properties (εr = 5.89, Q×f = 44,000 GHz, τf = ?206 ppm/°C). In order to improve its large negative temperature coefficient of resonant frequency, in the following study, rutile nano TiO2 particles were added as τf compensator. Adding TiO2 powders not only effectively improve the temperature stabilities of the multiphase ceramics, but also make the grain growth more uniform. With the increase of TiO2 content from 0.40 to 0.60, τf increases from ?73.5 ppm/°C to +42.3 ppm/°C. The best dielectric property of 0.45Li3.12PO4-0.55TiO2 composite ceramic is εr = 13.29, Q×f = 40,700 GHz, τf = +8.8 ppm/°C.  相似文献   

9.
Phase development and changes in crystalline composition of LTCC material during the sintering process were investigated using in-situ X-ray diffraction (XRD) measurements. CeramTape GC was chosen as the chemically simplest model system composed of alumina particles and glass for the investigations. The chemical characterization and microstructural analyses of the tapes sintered with some representative firing profiles were performed by techniques such as (scanning) transmission electron microscope, energy-dispersive X-ray spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and XRD. Moreover, the porosification behavior of LTCC substrates fired at different peak temperatures was studied. These investigations are important for the subsequent wet chemical etching, representing an approach which allows to reduce locally the permittivity of LTCC tapes. Treatment with a KOH solution shows non-selective etching behavior for all substrates. In addition, highly porous silica structures corresponding to Ca and Al depletion from the anorthite phase were observed in all samples after etching treatment.  相似文献   

10.
The sintering temperature of BaTiO3 powder was reduced to 900 °C due to the ZnO-B2O3-Li2O-Nb2O5-Co2O3 addition. Excellent densification was achieved after sintering at 900 °C for 2 h. The low sintering temperature of newly developed capacitor materials allows a co-firing with pure silver electrodes. The dielectric constant and the temperature stability of the dielectric constant are strongly correlated with the composition of the ZnO-B2O3-Li2O additives. A high dielectric constant up to 3000 and a dielectric loss less than 0.024 were measured on multilayer capacitors sintered at 900 °C with silver inner electrodes.  相似文献   

11.
Cold sintered, Li2MoO4-based ceramics have recently been touted as candidates for electronic packaging and low temperature co-fired ceramic (LTCC) technology but MoO3 is an expensive and endangered raw material, not suited for large scale commercialization. Here, we present cold sintered temperature-stable composites based on LiMgPO4 (LMP) in which the Mo (and Li) concentration has been reduced, thereby significantly decreasing raw material costs. Optimum compositions, 0.5LMP-0.1CaTiO3-0.4K2MoO4 (LMP-CTO-KMO), achieved 97% density at <300°C and 600 MPa for 60 minutes. Raman spectroscopy, X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray mapping confirmed the coexistence of end-members, LMP, CTO, and KMO, with no interdiffusion and parasitic phases. Composites exhibited temperature coefficient of resonant frequency ~ –6 ppm/°C, relative permittivity ~9.1, and Q × f values ~8500 GHz, properties suitable for LTCC technology and competitive with commercial incumbents.  相似文献   

12.
Microwave dielectric properties of CaWO4 ceramics were investigated as a function of H3BO3 and/or Bi2O3 content and sintering temperature. For a single addition of H3BO3 (1  x (wt.%)  5), the density of specimen increased up to 3 wt.% H3BO3, and then decreased. The dielectric constant (K) and the quality factor (Q × f) of the specimens sintered at 850 °C showed lower value than those of specimens sintered above 900 °C due to the poor sinterability. With the increase of H3BO3 content of 0.5 wt.% Bi2O3yH3BO3 (5  y (wt.%)  20), the sintering temperature of CaWO4 ceramics could be effectively reduced from 1100 to 850 °C without degradation of dielectric properties. For the specimens sintered at 850 °C for 30 min, K was not changed remarkably with Bi2O3–H3BO3 content; however, Q × f value increased up to 9 wt.% H3BO3 of 0.5 wt.% Bi2O3yH3BO3, and then decreased. The temperature coefficient of resonant frequency (TCF) shifted to the positive value with increasing Bi2O3–H3BO3 content. Typically, K of 8.7, Q × f of 70,220 GHz and TCF of −15 ppm/°C were obtained for the specimens with 0.5 wt.% Bi2O3–9 wt.% H3BO3 sintered at 850 °C for 30 min.  相似文献   

13.
Li2.08TiO3-LiF Glass-free Low temperature co-fired ceramic (LTCC) green tapes were prepared by tape casing technique. The rheology of the slurry was characterized using rheometer. The slurry exhibited pseudoplastic behavior. The sintering kinetics of the green tape was investigated using heating microscope. The sintering activation energy was determined to be ∼173 kJ/mol. The green tape could be densified at 900 °C/2 h. Microwave dielectric properties of the sintered tape were characterized in a split-post dielectric resonator using a network analyzer. The ceramic sheet with thickness of 0.11 mm demonstrated good microwave dielectric properties: εr = 22.4 and Q × f = 35,490 GHz. The cross sectional microstructure of the cofired multilayer stack was observed by scanning electron microscopy (SEM). The green tape demonstrated good chemical and shrinkage compatibilities with Ag electrode during sintering process. The thermal expansion coefficient and thermal conductivity of the ceramic is 22.4 ppm/∘C and 4.75 W m−1 K −1, respectively.  相似文献   

14.
The paper is devoted to studying of Si4++Mg2+ complex additive for obtaining transparent YAG ceramics for laser applications. Ceramics were fabricated by reactive vacuum sintering of commercial Y2O3, Al2O3 powders taken in a stoichiometric mixture with TEOS and MgO as sintering aids. Microstructure and optical properties of YAG:Si4+,Mg2+ ceramics were investigated as a function of the Si4+/Mg2+ ratio. It was found that the influence of complex additive does not correspond to the direct superposition of known Si4+- and Mg2+-induced sintering mechanisms and involves interaction between Si4+ and Mg2+ ions during sintering. It was shown that CSi/CMg> 1 provides more effective pore elimination and uniform microstructure when CSi/CMg< 1 gives more intense inhibition of grain grown which may be important for scaling the size of ceramics.  相似文献   

15.
《Ceramics International》2023,49(18):29913-29922
Reduced copper slag is a promising substitute constituent in anorthite-based ceramics. To reduce the sintering temperature of this type of slag-derived ceramics, the role of TiO2 addition in the sintering, microstructure, physical and mechanical properties, and environmental and appearance performance was studied by experimental and theoretical methods. The results show that the Ti element was dissolved in the glassy phases and anorthite crystals instead of producing new phases. This behavior allows the liquid appearance at earlier temperatures and accelerates the ion diffusion, thus significantly enhancing the sintering and contributing to a dense microstructure with fine closed pores. Besides, this improvement is achieved at a relatively slight sacrifice of anorthite grains. The addition of 4 wt% TiO2 results in a decrease in the vitrification temperature by 100 oC and an enhancement of flexural strength by 50%. Moreover, the slag-derived ceramics show extremely low leaching toxicity and a relatively higher whiteness, ensuring the cleanliness and quality of anorthite-based ceramics. However, the ceramics show lower bulk density and obvious surface defects with the TiO2 content up to 6 wt%.  相似文献   

16.
Sintering densification processes of the composite ceramics (Bi3.15Nd0.85Ti3O12 (BNdT)/CoFe2O4 (CFO)) have been investigated using dilatometric experiments combining with the TG-DTA, density measurements and microstructure studies. Microstructures analyses and quantitative calculations show that the composite ceramics achieve densification at low temperatures (<1150 °C). The formation of coherent-lattice interfaces between (200)/(020)BNdT and (310)CFO are considered to play an important role on such densification. The intrinsic preferred orientation of BNdT grains is suppressed by CFO phase because of this coherent relationship. Although the sintering activation energies of 0.8BNdT-0.2CFO are about 2.7 times larger than those of pure BNdT due to the pinning effect, the composite ceramic could still be densified, indicating the formation energy of coherent-lattices provided the extra sintering force. The even coercive electric fields of the resulting pure BNdT and 0.8BNdT-0.2CFO ceramic are approximately 89 and 97 kV/cm, respectively, at 250 kV/cm. The polarization of 0.8BNdT-0.2CFO reaches saturation around 430 kV/cm.  相似文献   

17.
《Ceramics International》2021,47(20):28675-28684
In next-generation mobile and wireless communication systems, low sintering temperature and excellent dielectric properties are synergistic objectives in the application of dielectric resonators/filters. In this work, Li2Ti0·98Mg0·02O2·96F0.04–1 wt% Nb2O5 (LTMN) ceramics were fabricated, and their sintering temperature was successfully lowered from 1120 °C to 750 °C by adjusting the mass ratio of B2O3–CuO (BC) additive. The optimum dielectric properties (ԑr ~ 24.44, Q × f ~ 60,574 GHz and τf ~ 22.8 ppm/°C) were obtained in BC-modified LTMN ceramics sintered at 790 °C. Even if their sintering temperature was lowered to 750 °C, the lowest temperature among the Li2TiO3-based dielectric ceramics currently used for LTCC technology, excellent dielectric properties (ԑr ~ 23.77, Q × f ~ 51,636 GHz) were still maintained. Additionally, no extra impurity phase was detected in BC-modified LTMN ceramics co-fired with Ag at 790 °C, indicating that BC-modified LTMN ceramics have a bright prospect in high-performance LTCC devices for 5G applications.  相似文献   

18.
(1-x)Mg0.90Ni0.1SiO3-xTiO2 (x = 0, 0.01, 0.03, 0.05) ceramics were successfully formed by the conventional solid-state methods and characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS), and their microstructure and microwave dielectric properties systematically investigated. It was observed that when TiO2 content increased from 0 to 5 wt%, the Qufo of the sample decreased from 118,702 GHz to 101,307 GHz and increases the τf value from −10 ppm/°C to +3.14 ppm/°C accompanied by a notable lowering in the sintering temperature (125 °C). A good combination of microwave dielectric properties (εr  8.29, Qufo  101,307 GHz and τf  −2.98 ppm/°C) were achieved for Mg0.90Ni0.1SiO3 containing 3 wt% of TiO2 sintered at 1300 °C for 9 h which make this material of possible interest for millimeter wave applications.  相似文献   

19.
烧结气氛对合成MgAl2O4-Ti(C,N)复合陶瓷的影响   总被引:3,自引:3,他引:3  
以金属铝粉、钛白粉和轻烧MgO细粉为原料,通过设计100%焦炭粒(简称C气氛),10%钛白粉 90%焦炭粒(简称TC气氛),以及10%硅微粉 90%焦炭粒(简称SC气氛)3种埋粉条件下的高温烧结还原性气氛,采用X射线衍射仪(XRD)、扫描电镜(SEM)和微区电子探针分析(EPMA)等手段,研究了铝热还原氮化法(1600℃3h)制备MgAl2O4-Ti(C,N)复合陶瓷在不同烧结气氛下的相组成和显微结构的变化。结果表明在不同气氛下,烧后试样的主要物相均为MgAl2O4和Ti(C,N),Ti(C,N)可能会固溶氧,气氛对Ti(C,N)的影响较大。和单纯埋炭气氛下相比,在TC气氛下有助于Ti(C,N)的生成,但晶粒细小;在SC气氛下不利于Ti(C,N)的生成,且有玻璃相存在。  相似文献   

20.
《Ceramics International》2017,43(10):7636-7640
This study investigated the effects of Li2O-MgO-ZnO2-B2O3-SiO2 (LMZBS) glass on the microstructure, sintering behaviour and microwave dielectric properties of Li(Zn0.95Co0.05)1.5SiO4 ceramics. Li(Zn0.95Co0.05)1.5SiO4 powders were synthesised by a traditional solid-state route and added with different amounts of LMZBS glass (0–4 wt%) to decrease the sintering temperature of the ceramics to approximately 900 °C. The XRD patterns showed that no chemical reactions occurred between the Li(Zn0.95Co0.05)1.5SiO4 ceramics and the LMZBS glass within the doping range. The SEM images indicated that the sample added with 1.5 wt% glass and sintered at 900 °C exhibited a compact and uniform microstructure. In particular, the microwave dielectric properties of the products were related to LMZBS glass content and sintering temperature. The sample with 1.5 wt% LMZBS glass exhibited excellent microwave dielectric properties, namely, εr=6.12, Q×f=83,600 GHz and τf=39.1ppm/.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号