首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 5 毫秒
1.
《Ceramics International》2023,49(6):9543-9550
In this article, the Cu/MoS2/NiMnIn memory structure was fabricated over stainless steel substrate for flexible electronics applications. The bipolar resistive switching characteristics were observed in two different fabricated devices (i) without sulfur vacancies (D1) and (ii) with sulfur vacancies (D2) in MoS2 thin film. Three different resistance states such as the high resistance state (HRS), intermediate resistance state (IRS) and low resistance state (LRS) have been detected for the D2 memory device. It could be ascribed to the two filamentary models based on the movement of sulfur vacancies and the formation of Cu metallic filament with applied bias voltage. Moreover, the Ohmic and modified space charge limited conduction mechanisms clearly explain the current conduction in different resistance states of device D2. The fabricated MoS2 thin film-based memory structure exhibits stable resistive switching behavior with a high OFF/ON ratio of ~3.6 × 103, good consistency of ~3600 endurance cycles and excellent data retention capability up to 3000 s. Moreover, the remote tuning of device D2 was thoroughly investigated and an appreciable change in SET voltage was detected with external temperature and magnetic field. Additionally, the external magnetic field altered the switching states and enhanced the multi-bit data storage capability of the memory device. This can be ascribed to the effect of the Lorentz force on ionic movement in the presence of the external magnetic field. The mechanical flexibility of the memory structure was tested for 1000 bending cycles at various bending angles in both the tensile and compressive bending modes. Hence, the present study opens up new ways for the futuristic flexible device for high data storage and neuromorphic computing applications.  相似文献   

2.
《Ceramics International》2022,48(6):7876-7884
In this paper we show resistive switching characteristics of ZnFe2O4 thin films grown by pulsed laser deposition at various oxygen partial pressures. We discuss how the microstructure, surface roughness, oxidation condition, and resistive switching properties of ZnFe2O4 thin films are influenced by the oxygen partial pressure prevalent in the chamber during the deposition process. The films were deposited at oxygen partial pressure (pO2) of 0.0013, 0.013, 0.13 and 1.3 mbar. The ZnFe2O4 thin film deposited at the lowest pO2 (0.0013 mbar) did not display a resistive switching characteristic. The ZnFe2O4 device deposited at 0.13 mbar yielded the best results. These devices have a low SET variance and a large memory window (more than 2 orders of magnitude) due to an optimum amount of oxygen vacancies/ions contained in the ZnFe2O4 film, which is helpful for better resistive switching, than devices deposited at other oxygen pressures. We also find that the migration of oxygen vacancies is linked to the resistive switching process.  相似文献   

3.
《Ceramics International》2016,42(6):6807-6816
A novel sol–gel method has been developed to deposit multiferroic nanocrystalline bismuth ferrite (BFO) thin films over Pt/Ti/SiO2/Si substrate by spin-coating technique with various thicknesses. It is found that the deposition parameters significantly influence the quality and the thickness of BiFeO3 films. The films are all uniform and adherent to Pt/Ti/SiO2/Si substrate. The spin-coated films are characterized by X-ray diffraction (XRD), Scanning electron microscope (SEM), Atomic force microscope (AFM), photoluminescence spectroscopy (PL) and Fourier transform infrared spectroscopy (FTIR). Rhombohedral structure of BFO is confirmed from the XRD and FT-IR studies. The SEM image shows a porous structure formation of BFO over Pt/Ti/SiO2/Si substrate. The surface outgrowth for the films at various thicknesses is measured from root mean square (RMS) and surface roughness through AFM. The step height and the RMS are found to be high for the film at 500 nm in comparison with thickness of 200 nm. The influence of the dielectric properties of the porous BFO at different thicknesses is studied using LCRQ meter. Finally, the magnetic behavior of film is compared with MH hysteresis loop and Magnetoresistance (MR) studies.  相似文献   

4.
Preferentially (105)-oriented Sr0.7B12.8Ta2O9 thin films on SiO2/n-Si(100) have been prepared by Pulsed Laser Deposition (PLD) at low temperature as low as 350°C, which is the lowest process temperature for growing SrxBiyTa2O9(SBTO) ferroelectric thin films. Insulating properties of the SBTO film have been improved by lowering the process temperature or by increasing Sr/Bi atomic ratio from 0.7/2.8 to 0.7/2.0. After applying the low leakage SBTO films to Metal-Ferroelectric-Insulator-Semiconductor diode structures, it is finally observed that their C-V curves have counterclockwise dielectric hysteresis that indicates the films' ferroelectric hysteresis sufficiently control the Si surface potential. A low temperature process in preparing ferroelectric thin film and Sr-deficient and Bi-excess SBTO thin film by PLD method are very effective and promising for realizing an excellent MFIS FET structure.  相似文献   

5.
Bi0.85La0.15FeO3 (BLFO015) thin films were deposited by the polymeric precursor solution on La0.5Sr0.5CoO3 substrates. For comparison, the films were also deposited on Pt bottom electrode. X-ray diffraction data confirmed the substitutions of La into the Bi site with the elimination of all secondary phases under a substitution ratio x = 15% at a temperature of 500 °C for 2 h. A substantial increase in the remnant polarization (Pr) with La0.5Sr0.5CoO3 bottom electrode (Pr  34 μC/cm2) after a drive voltage of 9 V was observed when compared with the same film deposited on Pt substrate. The leakage current behavior at room temperature decreased from 10?8 (Pt) to 10?10 A/cm2 on (La0.5Sr0.5CoO3) electrode under a voltage of 5 V. The fatigue resistance of the Au/BLFO015/LSCO/Pt/TiO2/SiO2/Si (1 0 0) capacitors with a thickness of 280 nm exhibited no degradation after 1 × 108 switching cycles at a frequency of 1 MHz.  相似文献   

6.
Chi-Lin Li 《Electrochimica acta》2008,53(22):6434-6443
Amorphous LiFe(WO4)2 thin films have been fabricated by radio-frequency (R.F.) sputtering deposition at room temperature. The as-deposited and electrochemically cycled thin films are, respectively, characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, selected area electron diffraction, and X-ray photoelectron spectra techniques. An initial discharge capacity of 198 mAh/g in Li/LiFe(WO4)2 cells is obtained, and the electrochemical behavior is mostly preserved in the following cycling. These results identified the electrochemical reactivity of two redox couples, Fe3+/Fe2+ and W6+/Wx+ (x = 4 or 5). The kinetic parameters and chemical diffusion coefficients of Li intercalation/deintercalation are estimated by cyclic voltammetry and alternate-current (AC) impedance measurements. All-solid-state thin film lithium batteries with Li/LiPON/LiFe(WO4)2 layers are fabricated and show high capacity of 104 μAh/cm2 μm in the first discharge. As-deposited LiFe(WO4)2 thin film is expected to be a promising positive electrode material for future rechargeable thin film batteries due to its large volumetric rate capacity, low-temperature fabrication and good electrode/electrolyte interface.  相似文献   

7.
The Cu2ZnSnS4 (CZTS) thin films have been electrodeposited onto the Mo coated and ITO glass substrates, in potentiostatic mode at room temperature. The deposition mechanism of the CZTS thin film has been studied using electrochemical techniques like cyclic voltammetery. For the synthesis of these CZTS films, tri-sodium citrate and tartaric acid were used as complexing agents in precursor solution. The structural, morphological, compositional, and optical properties of the CZTS thin films have been studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), EDAX and optical absorption techniques respectively. These properties are found to be strongly dependent on the post-annealing treatment. The polycrystalline CZTS thin films with kieserite crystal structure have been obtained after annealing as-deposited thin films at 550 in Ar atmosphere for 1 h. The electrosynthesized CZTS film exhibits a quite smooth, uniform and dense topography. EDAX study reveals that the deposited thin films are nearly stoichiometric. The direct band gap energy for the CZTS thin films is found to be about 1.50 eV. The photoelectrochemical (PEC) characterization showed that the annealed CZTS thin films are photoactive.  相似文献   

8.
W. LiH. Zhao  P.R. Teasdale  R. John 《Polymer》2002,43(17):4803-4809
A poly(acrylamidoglycolic acid-co-acrylamide) [poly(AAGA-co-AAm)] hydrogel was prepared by copolymerising 2-acrylamidoglycolic acid (AAGA) with acrylamide (AAm). The copolymer hydrogel composition and structure was characterised by FTIR spectroscopy and elemental microanalysis and found to contain 3.5 AAGA monomer units for each AAm monomer unit. This was similar to the monomer ratios used in the synthesis. The metal ion binding properties of the hydrogel were characterised for a range of metal ions (Cu2+, Cd2+, K+, Na+, Mg2+ and Ca2+) under varying conditions of pH, ionic strength, metal concentration and time. The hydrogel was shown to bind Cu2+ and Cd2+ strongly under non-competitive binding conditions, with binding capacities of 5.3 and 5.1 μmol cm−2, respectively. The binding capacity of each metal decreased, under competitive binding conditions (with a range of metal ions present at 17.8 μN), to 1.3 and 0.17 μmol cm−2, respectively, indicating stronger selectivity for Cu2+. The metal ions were readily recovered (>94%) by eluting with 2 M nitric acid solution for 24 h. The binding capacities for Cu2+ and Cd2+ were also found to decrease with increasing ionic strength and at pH values <5. The copolymer was found to have an equilibrium swelling ratio (qw) of over 500 at a maxima of pH 5.4 and at low ionic strengths. Finally, the copolymer hydrogel was tested as a binding phase with the diffusive gradients in thin films technique. A linear mass vs. time relationship was observed for Cu2+ in synthetic Windermere water with a recovery of approximately 100%.  相似文献   

9.
We have studied the rate of methanol formation over Cu(100) and Ni/Cu(100) from various mixtures of CO, CO2 and H2. It is found that the presence of submonolayer quantities of Ni leads to a strong increase in the rate of methanol formation from mixtures containing all three components whereas Ni does not influence the rate from mixtures of CO2/H2 and CO/H2, respectively. The influence of the partial pressures of CO and CO2 on the rate indicates that the role of CO is strictly promoting. From temperature-programmed desorption spectra it follows that the surface concentration of Ni depends strongly on the partial pressure of CO. In this way the increase in reactivity is interpreted as a CO-induced structural promotion introduced by the stronger bonding of CO to Ni as compared to Cu. It is suggested that this type of promotional behavior will be of general importance in existent catalysts and perhaps even more relevant in the development of new or improved bimetallic catalysts. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号