首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Graphene nanoflake (GNF) films have been fabricated on a fluorine doped tin oxide (FTO) glass using a doctor blade method and thermally annealed in air and argon ambient at various temperatures. The GNF/FTO thin films were employed as a counter electrode for dye sensitized solar cells (DSSCs). Results showed the GNF/FTO film could enhance the power conversion efficiency (PCE) of DSSC devices more effectively when annealed in argon ambient rather than in air and at annealing temperatures higher than 380 °C. The PCE enhancement was mainly due to the lowered oxygen concentration in the film and the elevated electrical conductance. A PCE of 6.08% or 88% of that with a Pt counter electrode has been achieved for DSSCs with a GNF counter electrode, suggesting that GNF is a highly potential candidate to replace Pt catalyst.  相似文献   

2.
Bi2Fe4O9 (BFO) is one of the most important photocatalyst materials and its composition with graphene may leave an optimizing effect on the photocatalytic performance. In this paper, reduced graphene oxide (RGO) with various contents is selected to be composited with BFO successfully via one‐step hydrothermal method. A series of BFO‐xRGO (x=0, 1.25, 2.50, 3.75, 5, 6.25, and 7.50 wt.%) were prepared and the effects of RGO content on crystalline, light absorption, impedance, and photocatalytic degradation rate of methyl violet (MV) solution are characterized. The entire film samples exhibit enhanced photocatalytic efficiency. Especially, with 5 wt.% RGO content added, the film sample shows the best photocatalytic degradation efficiency with a MV solution degradation rate of 95%. This implies that the composition of RGO allows BFO‐based thin film as an efficient photocatalyst candidate, and as well, the BFO/RGO composite possesses the potential for better use in the related photocatalyst applications.  相似文献   

3.
Bismuth ferrite thin films were prepared via sol–gel spin-coating method and the effects of annealing temperature on microstructure, optical, ferroelectric and photovoltaic properties have been investigated. The results show that the bismuth ferrite thin films annealed at 550 °C is single phase and the grain size increases with the rise of annealing temperature. The band gap of bismuth ferrite thin films annealed at 550–650 °C is between 2.306 eV and 2.453 eV. With the rise of the annealing temperature, the remnant polarization gradually decreases and the coercive electric field increases. The short circuit photocurrent density decreases with the rise of annealing temperature, and the open circuit photovoltage and the power conversion efficiency of bismuth ferrite thin films annealed at 550 °C are higher than the thin films annealed at higher temperature.  相似文献   

4.
《Ceramics International》2016,42(15):16521-16528
Heterostructured thin films of lanthanum ferrite (LFO) and bismuth ferrite (BFO) with different thicknesses were successfully obtained by a soft chemical method. The films were deposited by spin-coating and annealed at 500 °C for 2 h. The XRD pattern confirmed the purity of the thin films, where no additional peaks associated with impurity phases were present. The morphology analysis showed spherical grains with a random size distribution. The grain sizes increased with the number of BFO layers. The average grain size varied from 43 nm to 68 nm. The best dielectric results were obtained for the film with 6 LFO sublayers and 4 BFO top layers, in which the dielectric constant showed low dispersion. Since the capacitance-voltage curve for the film 6-LFO/4-BFO is symmetrical around null voltage, it can be inferred that this heterostructure has few mobile ions and accumulated charges on the film-substrate interface. In this film, polarization remains almost constant during 1012 cycles before the onset of degradation, which shows the very high resistance of the films to fatigue. Magnetoelectric coefficient measurements of the films revealed the formation of hysteresis loops, and a maximum value of 12 V/cmOe was obtained for the magnetoelectric coefficient in the longitudinal direction; this value is much higher than that previously reported for pure BFO thin films.  相似文献   

5.
Carbon is the only element that has stable allotropes in the 0th through the 3rd dimension, all of which have many outstanding properties. Graphene is the basic building block of other important carbon allotropes. Studies of graphene became much more active after the Geim group isolated "free" and "perfect" graphene sheets and demonstrated the unprecedented electronic properties of graphene in 2004. So far, no other individual material combines so many important properties, including high mobility, Hall effect, transparency, mechanical strength, and thermal conductivity. In this Account, we briefly review our studies of bulk scale graphene and graphene oxide (GO), including their synthesis and applications focused on energy and optoelectronics. Researchers use many methods to produce graphene materials: bottom-up and top-down methods and scalable methods such as chemical vapor deposition (CVD) and chemical exfoliation. Each fabrication method has both advantages and limitations. CVD could represent the most important production method for electronic applications. The chemical exfoliation method offers the advantages of easy scale up and easy solution processing but also produces graphene oxide (GO), which leads to defects and the introduction of heavy functional groups. However, most of these additional functional groups and defects can be removed by chemical reduction or thermal annealing. Because solution processing is required for many film and device applications, including transparent electrodes for touch screens, light-emitting devices (LED), field-effect transistors (FET), and photovoltaic devices (OPV), flexible electronics, and composite applications, the use of GO is important for the production of graphene. Because graphene has an intrinsic zero band gap, this issue needs to be tackled for its FET applications. The studies for transparent electrode related applications have made great progress, but researchers need to improve sheet resistance while maintaining reasonable transparency. Proposals for solving these issues include doping or controlling the sheet size and defects, and theory indicates that graphene can match the overall performance of indium tin oxide (ITO). We have significantly improved the specific capacitance in graphene supercapacitor devices, though our results do not yet approach theoretical values. For composite applications, the key issue is to prevent the restacking of graphene sheets, which we achieved by adding blocking molecules. The continued success of graphene studies will require further development in two areas: (1) the large scale and controlled synthesis of graphene, producing different structures and quantities that are needed for a variety of applications and (2) on table applications, such as transparent electrodes and energy storage devices. Overall, graphene has demonstrated performance that equals or surpasses that of other new carbon allotropes. These features, combined with its easier access and better processing ability, offer the potential basis for truly revolutionary applications and as a future fundamental technological material beyond the silicon age.  相似文献   

6.
《Ceramics International》2023,49(4):5738-5747
Herein we report the palladium loaded bismuth ferrite for its bidirectional application as acetone gas sensor and photocatalytic dye degradation of malachite green. The motivation for loading Pd on bismuth ferrite (BFO) is due to its fascinating catalytic redox reactions causing faster adsorption and desorption of the oxygen molecules over the metal oxide. The planned perovskites were developed via surfactant assisted sol-gel auto-combustion route, and characterized their physico-chemical properties using XRD, SEM, TEM, HRTEM, EDAX, XPS and BET. The developed BFO showed the best selectivity towards acetone, whose response was 69% at 300 °C operating temperature for 500 ppm gas concentration. By tuning the surface area and catalytic behavior using CTAB and Pd loading, respectively, the enhancement in the gas response properties of BFO was achieved to 95% with the response and recovery time of 75 s and 104 s. The 1 wt% Pd loaded BFO showed the highest response (95%) in comparison to rest of the Pd loadings (0.5, 1.5 and 2.0 wt%). Moreover, the sunlight driven photocatalytic dye degradation of malachite green is carried out at 1 h exposure time. Here as well, 1 wt% Pd loaded BFO exhibited the maximum dye degradation efficiency of 51%. The results of this study demonstrate the developed perovskites have a significant potential for the use in dual applications such as acetone gas sensor and MG photocatalysis.  相似文献   

7.
《Ceramics International》2017,43(8):6124-6129
We fabricated transparent indium tin oxide (ITO)/antimony tin oxide (ATO) electrodes using a combined process of spin-coating of hybrid ITO nanoinks, electrospraying of ATO, and hydrogen (H2) activation carried out at a low annealing temperature of 200 °C. The produced ITO electrode exhibited an enhanced surface densification and phase conversion of In(OH)3 to ITO. As a result, the H2-activated ITO/ATO electrodes exhibited excellent transparent conducting performances with a superior sheet resistance of ~47.5 Ω/□ and a good transmittance of ~85.3% as compared to the ITO and ITO/ATO electrodes. Despite the use of the low annealing temperature, the achieved improvement in the conducting performance could be attributed to the synergistic effect of the enhanced carrier concentration and the Hall mobility related to the improved surface densification achieved with the electrosprayed ATO thin film and reduction of the residual In(OH)3 phase by H2 activation. Therefore, our method can be used as a novel strategy for obtaining high-performance solution-processed transparent conducting oxides at a low annealing temperature of 200 °C for use in various optoelectronic applications.  相似文献   

8.
《Ceramics International》2016,42(6):6807-6816
A novel sol–gel method has been developed to deposit multiferroic nanocrystalline bismuth ferrite (BFO) thin films over Pt/Ti/SiO2/Si substrate by spin-coating technique with various thicknesses. It is found that the deposition parameters significantly influence the quality and the thickness of BiFeO3 films. The films are all uniform and adherent to Pt/Ti/SiO2/Si substrate. The spin-coated films are characterized by X-ray diffraction (XRD), Scanning electron microscope (SEM), Atomic force microscope (AFM), photoluminescence spectroscopy (PL) and Fourier transform infrared spectroscopy (FTIR). Rhombohedral structure of BFO is confirmed from the XRD and FT-IR studies. The SEM image shows a porous structure formation of BFO over Pt/Ti/SiO2/Si substrate. The surface outgrowth for the films at various thicknesses is measured from root mean square (RMS) and surface roughness through AFM. The step height and the RMS are found to be high for the film at 500 nm in comparison with thickness of 200 nm. The influence of the dielectric properties of the porous BFO at different thicknesses is studied using LCRQ meter. Finally, the magnetic behavior of film is compared with MH hysteresis loop and Magnetoresistance (MR) studies.  相似文献   

9.
We report a new semitransparent inverted polymer solar cell (PSC) with a structure of glass/FTO/nc-TiO2/P3HT:PCBM/MoO3/Ag/MoO3. Because high-temperature annealing which decreased the conductivity of indium tin oxide (ITO) must be handled in the process of preparation of nanocrystalline titanium oxide (nc-TiO2), we replace glass/ITO with a glass/fluorine-doped tin oxide (FTO) substrate to improve the device performance. The experimental results show that the replacing FTO substrate enhances light transmittance between 400 and 600 nm and does not change sheet resistance after annealing treatment. The dependence of device performances on resistivity, light transmittance, and thickness of the MoO3/Ag/MoO3 film was investigated. High power conversion efficiency (PCE) was achieved for FTO substrate inverted PSCs, which showed about 75% increase compared to our previously reported ITO substrate device at different thicknesses of the MoO3/Ag/MoO3 transparent electrode films illuminated from the FTO side (bottom side) and about 150% increase illuminated from the MoO3/Ag/MoO3 side (top side).  相似文献   

10.
二氧化钛/氧化石墨烯复合光催化剂的合成   总被引:1,自引:0,他引:1  
采用水热法,以钛酸四正丁酯及氧化石墨烯(GO)为原料,在水性体系中合成了一系列具有不同GO质量分数的TiO2/GO复合光催化剂。FE-SEM分析结果表明,分散的钛酸四正丁酯以多分子层的形式吸附到氧化石墨烯的表面,最后在水热过程中转化为锐钛型TiO2粒子。当氧化石墨烯的质量分数低于3%时,产物中含有纯TiO2微球及TiO2/GO复合物;当氧化石墨烯质量分数大于5%时,产物为单纯的TiO2/GO复合物。电化学性能测试结果表明,GO复合后,TiO2电极中载流子的传输效率提高。氧化石墨烯复合量为10%时,复合光催化剂显示了对亚甲基蓝最佳的光催化活性。当复合氧化石墨烯转化为石墨烯后,其光催化活性可得到进一步大幅度的提高。  相似文献   

11.
《Ceramics International》2015,41(8):9265-9275
Calcium (Ca)-doped bismuth ferrite (BiFeO3) thin films prepared by using the polymeric precursor method (PPM) were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), polarization and magnetic measurements. Structural studies by XRD and Rietveld refinement reveal the co-existence of distorted rhombohedral and tetragonal phases in the highest doped BiFeO3 (BFO) where enhanced ferroelectric and magnetic properties are produced by internal strain. A high coercive field in the hysteresis loop is observed for the BiFeO3 film. Fatigue and retention free characteristics are improved in the highest Ca-doped sample due to changes in the crystal structure of BFO for a primitive cubic perovskite lattice with four-fold symmetry and a large tetragonal distortion within the crystal domain.  相似文献   

12.
The metal grid and reduced graphene oxide (RGO) are both promising transparent conductive materials for replacing the indium tin oxide (ITO) in flexible optoelectronics. However, the large empty area that exists in the grid together with the relatively high sheet resistance of RGO hinder both the materials for practical applications. In this work, we report for the first time a novel strategy for efficient combination of the metal grid and RGO by using a newly developed room-temperature reduction technique. The obtained RGO/metal grid hybrid films not only overcome the shortcomings of individual components but exhibit enhanced optical and electrical performances (Rs = 18 Ω sq−1 and T = 80%) and excellent flexural endurance. With this hybrid film as the window electrode, a highly flexible electrochromic device with excellent stability and ultra-fast response shorter than 60 ms has been successfully fabricated. Considering its high efficiency, high quality, low cost and large area, the strategy would be particularly useful for economically fabricating various metal grid/RGO films which are quite promising high performance transparent and conductive materials for next generation optoelectronic devices.  相似文献   

13.
以氧化石墨烯溶胶为前体,通过旋涂工艺制备薄膜型气敏元件,在低温80~180℃下进行热处理,获得系列不同还原程度的还原氧化石墨烯气敏元件,采用XRD、AFM、FT-IR、XPS对样品的层结构、薄膜厚度及含氧官能团变化属性进行表征,将气敏薄膜元件在相对湿度为11.3%~93.6%的范围内进行预湿处理,并测定元件对甲醛气氛的敏感性能。结果表明:随热还原处理温度的升高,氧化石墨烯的结构逐渐向类石墨结构转变,含氧官能团逐渐脱失,缺陷增多,薄膜的方块电阻呈数量级地减小,从41 MΩ减小至928 Ω;经不同湿度预处理的气敏元件置于甲醛气氛中产生了水分子与甲醛分子的竞争吸附,从而导致电阻的明显变化;在10?4甲醛气氛下,未还原或热还原温度较低的气敏元件适用于低、高湿环境下甲醛气氛的气敏测试,最大灵敏度为69.1%,而还原温度适中的元件则适用于中湿环境的甲醛测试,最大灵敏度为80.3%。  相似文献   

14.
This study demonstrates that a photo-thermal process, namely a concurrently light illumination during annealing, is an effective method to develop a high-quality BiFeO3 (BFO) thin film. The wavelength-dependent light effect, which is determined by the photo absorption property of the sol-gel synthesized BFO solution, assisted in the decomposition of organic residues within the film during the thermal history. The photo absorption property of the BFO precursor varied with an exponential function of temperatures. By using a combination of an appropriate wavelength light illumination and a suitable temperature thermal annealing, the BFO film formed in a uniform dense microstructure with near-stoichiometric composition which was difficult to achieve with a traditional thermal process. We proposed the application of light illumination under thermal process would improve the reaction sequences of the constituent species as well as the crystallization mechanism of BFO, then providing the flexibility to control the film characteristics.  相似文献   

15.
A novel architecture of graphene wrapped copper–nickel (Cu–Ni) nanospheres (NSs)/graphene film was proposed to be TCO- and Pt-free counter electrode (CE) with high electrocatalytic activity for dye-sensitized solar cells (DSSCs). The novel architecture CE is composed of highly conductive graphene film, Cu–Ni alloy NSs and the wrapping graphene on the surface of alloy NSs. The graphene film as an electrically conductive layer was synthesized by chemical vapor deposition (CVD) on the insulating SiO2 substrate, and graphene wrapped Cu–Ni alloy catalyst NSs on the graphene film were in situ formed by the reduction of Cu–Ni acetate and graphene growth using CVD. The graphene wrapped Cu–Ni NSs/graphene film CE shows much superior electrocatalytic activity, compared with graphene film, and the power conversion efficiency of 5.46% was achieved in DSSC devices, which is close to that of Pt/FTO electrode (6.19%). Therefore, the novel architecture of graphene wrapped Cu–Ni NSs/graphene film CE may be used as Pt- and TCO-free CEs for low-cost, high performance DSSCs.  相似文献   

16.
We investigated heterojunctions of Si with large-area high-quality monolayer and multi-layer graphene, as well as thin transparent graphite. We show that by controlling the transmittance and sheet resistance of large-area graphitic electrodes, it is possible to obtain solar cells with power conversion efficiency (PCE) exceeding 3% without any doping requirements. Our calculations indicate that such junctions can form extremely robust interfaces with near-100% internal quantum efficiency. Under optimized doping conditions, power conversion efficiencies increase almost universally by a factor of 2.5. Optimized conditions for reproducibly obtaining cells with PCE > 5% are presented, with the best PCE obtained ∼7.5% with short-circuit current density exceeding 24 mA/cm2.  相似文献   

17.
We report the seed/catalyst-free growth of ZnO on multilayer graphene by thermal evaporation of Zn in the presence of O2 gas. The effects of substrate temperatures were studied. The changes of morphologies were very significant where the grown ZnO structures show three different structures, i.e., nanoclusters, nanorods, and thin films at 600°C, 800°C, and 1,000°C, respectively. High-density vertically aligned ZnO nanorods comparable to other methods were obtained. A growth mechanism was proposed based on the obtained results. The ZnO/graphene hybrid structure provides several potential applications in electronics and optoelectronics.  相似文献   

18.
The anodic oxide film formed on molybdenum in an electrolyte of acetic acid, sodium borate, and a small quantity of water has been studied using ellipsometry. Experimental results indicate that when a cathodic current is applied to a molybdenum electrode upon which an anodic oxide film has been grown, conversion of the anodic oxide occurs and a different film appears on the electrode surface. Both the refractive index and the thickness of the converted film differ from those of the anodic film. Ellipsometric data are consistent with a model in which the conversion of the anodic film begins at the film-electrolyte interface and proceeds inward toward the metal. Other possible models are presented for comparison purposes.  相似文献   

19.
The preparation and characterization of heterojunction solar cell with ZnS nanocrystals synthesized by chemical bath deposition method were studied in this work. The ZnS nanocrystals were characterized by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). Lower reflectance spectra were found as the annealing temperature of ZnS film increased on the textured p-Si substrate. It was found that the power conversion efficiency (PCE) of the AZO/ZnS/textured p-Si heterojunction solar cell with an annealing temperature of 250°C was η = 3.66%.  相似文献   

20.
《Ceramics International》2015,41(7):8710-8716
The combination of the attractive properties of graphene with excellent characteristics of other functional nanomaterials has become a popular pathway for achieving applications in multiple fields. Herein, reduced graphene oxide (RGO)/CeO2 nanocomposites with enhanced capacitive performance were designed and synthesized by a facile two-step approach with a self-assembly method followed by thermal treatment. The structure, morphology and composition of the resulting RGO/CeO2 nanocomposites were systematically investigated. The presence of RGO can prevent the aggregation and control the structures of the CeO2 nanocrystals in the annealing process. The nanocomposites as electrode materials for supercapacitor exhibited an enhanced capacitive performance due to the synergic effect between RGO nanosheets and CeO2 nanocrystals. The excellent capacitive performance of the RGO/CeO2 nanocomposites offer great promise for supercapacitor applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号