首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, a new compact eight‐element three‐dimensional (3D) design of ultra‐wideband (UWB) multiple‐input‐multiple‐output (MIMO) antenna is proposed. For realizing polarization diversity, four elements of the MIMO antenna are oriented horizontally and four elements are arranged vertically. In the horizontal arrangement, the antenna resonating elements are placed orthogonally to each other, which reduces interelement coupling and offers a consistent link with the wireless systems/devices. The proposed antenna shows a bandwidth (S11 ≤ ?10 dB) of 17.99 GHz (2.83‐20.82 GHz) and isolation larger than 15 dB in the resonating band. The proposed MIMO/diversity antenna performance parameters such as envelope correlation coefficient, diversity gain, and total active reflection coefficient are evaluated and presented. Furthermore, the unit cell of the MIMO system is simulated for the packaged environment and it is observed that the antenna housing does not affect the antenna performance.  相似文献   

2.
A compact two‐element multiple‐input‐multiple‐output (MIMO) antenna system with improved impedance matching and isolation is presented for future sub‐6 GHz 5G applications. The two identical tapered microstrip line fed modified rhombus‐shaped radiating elements are placed in the same orientation at a compact substrate area of 0.24λ0 × 0.42λ0 (where, λ0 at 3.6 GHz) on a shared rectangular ground. A remodeled T‐shaped ground stub is placed between a pair of radiating element to achieve improved impedance bandwidth and isolation. Further, a split U‐shaped stub connected to center of each radiating element to achieve the desired resonant frequency of 3.6 GHz. The proposed antenna covers a ?10 dB operating band of 3.34 to 3.87 GHz (530 MHz) with more than 20 dB isolation between a pair of elements. MIMO performances are also analyzed and experimentally validated. The measured performances of a prototype are found in good agreement with simulated performances. Further, the simulation study is carried out to see the effect of housing and extended ground plane on two‐element MIMO antenna for practical application. An idea of realization of 12‐element MIMO is also studied using the proposed two‐element MIMO antenna.  相似文献   

3.
In this article, a three‐port nonplanar multiple‐input‐multiple‐output/diversity antenna with very high isolation between the radiating elements is presented. To realize diversity from the proposed three‐dimensional (3‐D) antenna configuration, three monopole radiating elements are arranged at an angle of 120°. The isolation between the radiators is enhanced by using a multilayered cylindrical decoupling structure and defected ground structure (DGS). The DGS reduces the coupling due to surface waves while the cylindrical decoupling structure reduces the coupling due to space waves. The proposed antenna offers consistent pervasive connectivity in the wireless communication environment due to its 3‐D geometry with multiple radiating elements and good diversity performance. The prototype is fabricated and measured result shows that more than 42 dB isolation is obtained at the center frequency 1.45 GHz. An increment of 1.2 dBi in the antenna gain is also achieved by using DGS and decoupling structure arrangement. The proposed antenna can be easily placed inside the cylindrical housing or it can be integrated with the existing electronics chip, thus nullifying the requirement for dedicated location in the system.  相似文献   

4.
The communication presents a simple dielectric resonator (DR) multiple‐input‐multiple‐output (MIMO) dual‐band antenna. It utilizes two “I”‐shaped DR elements to construct an “I”‐shaped DR array antenna (IDRAA) for MIMO applications. The ground plane of the antenna is defected by two spiral complementary meander lines and two circular ground slots. In the configuration, two “I”‐shaped DR elements are placed with a separation of 0.098λ. The antenna covers dual‐band frequency spectra from 3.46 to 5.37 GHz (43.26%) and from 5.89 to 6.49 GHz (9.7%). It ensures the C‐band downlink (3.7‐4.2 GHz), uplink (5.925‐6.425 GHz), and WiMAX (5.15‐5.35 GHz) frequency bands. Each DR element is excited with a 50‐Ω microstrip line feed with aperture‐coupling mechanism. The antenna offers very high port isolation of around 18.5 and 20 dB in the lower band and upper band, respectively. The proposed structure is suitable to operate in the MIMO system because of its very nominal envelope correlation coefficient (<0.015) and high diversity gain (>9.8). The MIMO antenna provides very good mean effective gain value (±0.35 dB) and low channel capacity loss (<0.35 bit/s/Hz) throughout the entire operating bands. Simulated and measured results are in good agreement and they approve the suitability of the proposed IDRAA for C‐band uplink and downlink applications and WiMAX band applications.  相似文献   

5.
In this paper, a compact multielement ultra‐wideband (UWB) multiple‐input multiple‐output (MIMO) antenna is presented. The proposed antenna is designed by integrating novel technique of stub‐loaded slot, split square ring (SSR), and fractal‐inspired isolator. The antenna size is effectively miniaturized by implementing three‐sided symmetrical stub‐loaded Koch slot and square split ring. The impedance bandwidth is broadened by using small notched partial ground plane. The mutual coupling between the element is impressively reduced by isolating the structure with a Sierpinski fractal. As a result, the proposed antenna achieves a UWB response with a very broad impedance bandwidth of 3.1 to 19 GHz. Moreover, the proposed antenna obtains high peak stable gain and diversity gain of up to 10 dBi, lower group delay (<1 ns), and lower envelop correlation coefficient of <.01. The proposed antenna has electrically small dimensions of 35 × 53 × 0.8 mm. With this low‐profile configuration, the proposed antenna is especially a good candidate for portable UWB‐MIMO wireless communication system.  相似文献   

6.
In this article, a novel design of single layer, compact, multiple input multiple output (MIMO) half‐mode substrate integrated waveguide (HMSIW) cavity backed quad element slot antenna with high front‐to‐back ratio (FTBR) is proposed. The proposed antenna consists of four rectangular SIW cavities with semi‐taper radiating slots. The antenna elements are placed in a fashion to achieve high isolation. This antenna is designed for WLAN vehicular communication system to cover the frequency range of 5.84 GHz to 5.96 GHz. It has high front to back ratio (FTBR) of more than 25 dB without using any external metallic reflector. It has more than 37 dB isolation in between orthogonal elements and more than 24 dB in between parallel elements. The envelop correlation coefficient (ECC) and diversity gain are 0.003 and 9.99 dB respectively in between all the elements. Moreover, the antenna has high gain and efficiency of more than 8 dB and 94%, respectively, in 10 dB impedance bandwidth. It can be tuned in a wide range of frequency.  相似文献   

7.
A compact planar frequency reconfigurable dual‐band multiple‐input‐multiple‐output (MIMO) antenna with high isolation and pattern/polarization diversity characteristics is presented in this article for WiFi and WiMAX standards. The MIMO configuration incorporates two symmetrically placed identical antenna elements and covers overall size of 24 mm × 24 mm × 0.762 mm. Reconfiguration of each antenna element is achieved by using a PIN diode which allows antennas to switch from state‐1 (2.3‐2.4 GHz and 4.6‐5.5 GHz) to state‐2 (3.3‐3.5 GHz and 4.6‐5.5 GHz). In state‐1, the configuration offers isolation ≥18 dB and 20 dB in lower band (LB) and upper band (UB) respectively; whereas, in state‐2, isolation ≥21 dB and 20 dB in LB and UB respectively is achieved. The same decoupling circuit provides high isolation in dual‐band of two states, which makes overall size of the proposed design further compact. The antennas are characterized in terms of envelope correlation coefficient, radiation pattern, gain, and efficiency. From measured and simulated results, it is verified that the proposed frequency reconfigurable dual‐band multi‐standard MIMO antenna design shows desirable performance in both operating bands of each state and compact size of the design makes it suitable for small form factor devices used in future wireless communication systems.  相似文献   

8.
In this endeavor, a new multiple‐input‐multiple‐output antenna with a sharp rejection at wireless local area network (WLAN) band is designed and practically examined for portable wireless ultra‐wideband applications. The intended diversity antenna possess a small size of 15 mm × 26 mm and two inverted L‐strip are loaded over the conventional rectangular patch antenna to form protrudent‐shaped radiator that acts as a radiating element. The sharp band‐rejection capability at WLAN is established by incising the L‐shaped slits at the decoupling structure. More than ?21 dB isolation is accomplished for the complete working band (ie, 2.87 ‐17 GHz). Degradation in the antenna efficiency at the center frequency of band rejection corroborates the good interference rejection capability. The working capabilities of the intended antenna are tested by using the isolation between the ports, total efficiency, gain, envelope correlation coefficient, radiation pattern, mean effective gain, and total active reflection coefficient.  相似文献   

9.
A multiband high‐isolation multiple‐input multiple‐output (MIMO) antenna using balanced mode and coupled neutralization line (NL) is presented in this article. The balanced modes of dipole and loop antennas, which leads to good isolation intrinsically are used for the 8 × 8 MIMO in the LTE bands 42 (3400‐3600 MHz)/Chinese 5G band (3300‐3400 and 3400‐3600 MHz). The unbalanced mode of loop antennas, which optimized by decoupling structure are designed for the 4 × 4 MIMO in the LTE band 40 (2300‐2400 MHz). Therefore, the eight‐antenna array is formed by four dipole elements and four loop elements. The simulated and measured results show that the proposed antenna can cover 2300 to 2400 and 3300 to 3600 MHz, with reflection coefficient better than ?6 dB and isolation higher than 15 dB. Good radiation performance and low envelope correlation coefficient can also be obtained. Specific absorption rate of user's hand is also discussed in this article.  相似文献   

10.
An investigation to enhance the decoupling between the elements of a compact wide band multiple‐input multiple‐output (MIMO) antenna is presented in this communication. A microstrip neutralization line (NL) is designed on the top of antenna surface to enhance the port isolation. The geometry is embedded on a jeans material to be apposite for the on‐body wearable applications. The antenna covers the frequency spectra from 3.14 to 9.73 GHz (around 102.4%) and fulfills the bandwidth requirements of WiMAX (3.2‐3.8 GHz), WLAN (5.15‐5.35/5.72‐5.85 GHz), C band downlink‐uplink (3.7‐4.2/5.9‐6.425 GHz), downlink defense (7.2‐7.7 GHz), and ITU (8‐8.5 GHz) bands. The port isolation is found to be more than 32 dB over the whole application bands. The antenna is appraised in a rich scattering environment with very minimal envelope correlation coefficient (ECC < 0.12) and great amount of diversity gain (DG > 9.8). The proposed MIMO antenna system is able to achieve the channel capacity loss (CCL) of less than 0.2 BPS/Hz throughout the whole operating band. The proposed structure is etched on an area of 30 × 50 mm2. The simulated and measured performances of the proposed antenna are in well‐matched state.  相似文献   

11.
A new compact three‐dimensional multiple‐input‐multiple‐output (MIMO) antenna comprised of eight antenna elements is presented. The unit cell of the proposed MIMO/diversity antenna consists of three elliptical rings connected together in the region close to the feed line and a rectangular‐shaped modified ground plane. To achieve polarization diversity with the proposed eight‐port MIMO configuration, four antenna elements are horizontally arranged and the remaining four are vertically oriented. The proposed antenna has an impedance bandwidth (S11 < ?10 dB) of 25.68 GHz (3.1‐28.78 GHz) with a wireless local area network notch‐band at 5.8 GHz (5.2‐6.5 GHz). In addition to polarization diversity, the proposed antenna provides a reliable link with wireless devices. The prototype antenna design is fabricated and measured for diversity performance. Also, the proposed MIMO antenna provides good performance metrics such as apparent diversity gain, channel capacity loss, envelope correlation coefficient, isolation, mean effective gain, multiplexing efficiency, and total active reflection coefficient.  相似文献   

12.
A novel compact planar dual‐band multiple input multiple output (MIMO) antenna with four radiating elements for 5G mobile communication is proposed. Each radiating element has a planar folded monopole, which is surrounded by L‐shaped meta‐rim extended ground stubs. The compact folded arms act as the main radiating elements, while combined with the L‐shaped meta‐rim stubs, the proposed antenna forms multiple resonances so as to achieve dual‐band coverage. The simulated and measured results show that the proposed antenna has two wide bands of ?6 dB return loss, consisting of 1.6 to 3.6 and 4.1 to 6.1 GHz, respectively. Without any additional isolation structure between the elements, the isolation for the proposed 2 × 2 MIMO antenna in both desired bands can be achieved better than 12 dB. The measured results show that the proposed MIMO antenna with good performance, that is, stable radiation patterns, high efficiencies, low specific absorption ratio (SAR) to human tissues, is suitable for WLAN/LTE, 4G and future 5G mobile phone applications.  相似文献   

13.
A four‐port multiple input multiple‐output (MIMO) antenna with common radiating element is proposed for 2.4 GHz Wi‐Fi applications. It comprises a modified circular radiator fed by four identical modified feedlines, partial ground planes, and a diagonal parasitic element (DPE). The parasitic element is used to enhance the interport isolation. The antenna has a 2:1 Voltage standing wave ratio (VSWR) impedance band 2.34‐2.56 GHz and nearly omnidirectional radiation patterns. The radiation efficiency is more than 79% and gain is 2 dBi at resonant 2.43 GHz. The isolation in the given frequency band is 10 dB. At the 2.43 GHz, the isolation between adjacent ports (1, 2 and 1, 4) is 14 dB and between opposite ports (1, 3) is 12 dB. The mean effective gain (MEG) ≤ ?2.7 dB and envelope correlation coefficient is <0.01. The ?10 dB total active reflection coefficient bandwidth is 202 MHz. The antenna is designed for a Wi‐Fi device and the effectiveness of antenna has been checked for distance of ½ feet from the human head. The specific absorption rate (SAR) is found to be ≤0.17 W/Kg by CST simulation tool.  相似文献   

14.
This article presents a coplanar waveguide fed global system for mobile communications band integrated ultra wide band (UWB) multiple input multiple output (MIMO) antenna with single and dual notch band characteristics. The novelty of the antenna lies in its design as all the unit cells of the proposed UWB MIMO antenna structure are orthogonal to each other therefore the additional isolation elements responsible for achieving high isolation are not required consequently making proposed antenna design simple and easy to fabricate. In this context, 2 MIMO systems have been designed. The first MIMO system is consisting of a dual port antenna whereas the second MIMO system is a printed quad port antenna; further single and dual notch band are achieved in the proposed multi‐port MIMO antenna. The antenna shows pattern diversity throughout the impedance bandwidth range. The gain of the antenna varies from 4 to 8.48 dBi. The 2 band notches are achieved at 4.8 and 7.7 GHz in the UWB range. The proposed antenna is fabricated and it is found measured results are in good agreement with simulated results.  相似文献   

15.
A quad‐port planar multiple‐input‐multiple‐output (MIMO) antenna possessing super‐wideband (SWB) operational features and triple‐band rejection characteristics is designed. The proposed MIMO configuration consists of four modified‐elliptical‐self‐complementary‐antenna (MESCA) elements, which are excited by tapered co‐planar waveguide (TCPW) feed lines. A radiator‐matched complementary slot is present in the ground conductor patch of each MESCA element. The proposed MIMO antenna exhibits a bandwidth ratio of 36:1 (|S11| < ?10 dB; 0.97‐35 GHz). Further, a step‐like slit‐resonator is etched in the radiator to eliminate interferences at 3.5 GHz. A hexagonal shaped complementary split ring resonator (CSRR) is also loaded on the MESCA radiator to remove interferences at 5.5 and 8.5 GHz. The MIMO antenna is fabricated on FR‐4 substrate of size 63 × 63 mm2 and experimental results are found in good agreement with the simulated results. The MIMO antenna exhibits inter‐element isolation >17 dB and envelope correlation coefficient (ECC) <0.01 at all the four ports.  相似文献   

16.
A compact four‐element multiple‐input‐multiple‐output (MIMO) antenna for ultra‐wideband (UWB) applications with WLAN band‐notched characteristics is proposed here. The proposed antenna has been designed to operate from 2 to 12 GHz while reject the frequencies between 4.9 to 6.4 GHz. The four antenna elements are placed orthogonal to attain the polarization diversity and high isolation. A thin stub connected to the ground plane is deployed as a LC notch filter to accomplish the rejected WLAN band in each antenna element. The mutual coupling between the adjacent elements is at least 17 dB while it has low indoor and outdoor envelop correlation (<0.45) and high gain with compact size of two boards, each measuring 50 × 25 mm2. To validate the concept, the prototype antenna is manufactured and measured. The comparison of the simulation results showed good agreement with the measured results. The low‐profile design and compact size of the proposed MIMO antenna make it a good candidate for diversity applications desired in portable devices operating in the UWB region.  相似文献   

17.
A 10‐element multiple‐input multiple‐output (MIMO) handset antenna array with triple‐band operation in the long‐term evolution band 42 (3400‐3600 MHz), band 43 (3600‐3800 MHz), and band 46 (5150‐5925 MHz) is studied in this article. Acceptable antenna performances are obtained by using polarization and pattern diversity techniques. To assess the multiplexing performances of the handset array in 5G, an 8‐element base station array covering 3.4‐7.1 GHz is presented and studied. An 8 × 10 MIMO system incorporating 8 transmit antennas, propagation scenario and 10 receive antennas is successfully reported, and its multiplexing performances are evaluated. The computed channel capacities in the low and high bands can be as high as 43.3 bps/Hz and 41.6 bps/Hz, which are promising for multi‐gigabit‐per‐second (multi‐Gbps) data transmission in 5G. The effects of user's hand and low MIMO order on the channel capacities are also investigated. Results show the robust performances of the proposed antenna system.  相似文献   

18.
A metal‐frame‐integrated eight‐antenna array operating in the long term evolution bands 41/42/43 (2.496 GHz‐2.69 GHz, 3.4 GHz‐3.8 GHz) for future fifth generation multiple‐input multiple‐output (MIMO) applications in smartphones is presented and discussed. The proposed eight‐antenna MIMO array is formed by integrating four identical building blocks, each of which consists two dual‐mode monopole antenna elements with a neutralization line (NL) embedded in between. Part of the metal frame is exploited to increase the effective resonant length of the monopole antenna. By using the wideband NL, two transmission dips can be generated, and thus an improved isolation (>10 dB) is achieved. The proposed antenna array was simulated and experimentally tested. Good antenna efficiency (>44%) and low envelope correlation coefficient (<0.2) were obtained in the bands of interest. In an 8 × 8 MIMO system with 20 dB signal‐to‐noise ratio, the calculated ergodic channel capacity was as high as 38 bps/Hz in the low band, and 38.3 bps/Hz in the high band. Details of the proposed antenna array are described. The simulated, measured, and calculated results are presented.  相似文献   

19.
A method to significantly increase the gain and reduce the mutual coupling of microstrip multiple‐intput multiple‐output (MIMO) antenna based on metamaterial concept is presented. The μ‐negative and ε‐negative features of the proposed modified peace‐logo planar metamaterial (MPLPM) and two‐sided MPLPM (TSMPLPM) structures are calculated. The antenna structure consists of eight MPLPM slabs and two TSMPLPM, which are embedded in azimuth plane of a MIMO antenna vertically. The dimensions of MIMO antenna are 28 × 16 × 6.3 mm3 at 40 GHz. As a result, a compact MIMO antenna is simulated in comparison with primary microstrip structures. The corresponding return‐loss of the antenna is better than 10 dB over 34.5 to 45.5 GHz for Ka‐band applications. Good consent between the measured and simulated result is tacked. The maximum simulated gain of the structure is 15.5 dB at 40 GHz, creating a maximum gain improvement of 11.5 dB in comparison with a MIMO antenna without any metamaterial combinations. The value of the insertion‐loss (isolation) is 33 dB, which has improved by more than 25 dB compared to the conventional sample.  相似文献   

20.
This article presents the designs of dual‐polarized dual wideband textile‐based two and four elements multiple‐input multiple‐output (MIMO) antennas for WLAN (IEEE 802.11a/b/g/c/n) and WiMAX (IEEE 802.16d) applications. These MIMO antennas cover the frequency spectra from 1.5 to 3.8 GHz (87% bandwidth) and 4.1 to 6.1 GHz (40% bandwidth). The characterization of the textile jeans substrate is determined experimentally using a vector network analyzer and dielectric assessment kit. These antennas provide near about 70% radiation efficiency with around 4 dBi peak gain in desired frequency ranges. The diversity performance is improved noticeably by printing meandered line structures on both planes. The proposed MIMO structure has a very low envelop correlation coefficient (ECC) <0.1 and high diversity gain (DG) >9.9. The Medium effective gain (MEG) also lies within a satisfactory value of ±3 dB. The two elements MIMO Antennas provide linear polarization at all desired frequency band while the four‐element antenna provides circular polarization at 2.4 GHz and linear polarization at 5.2 and 5.8 GHz application bands. The antenna also depicts good performance in wearable condition with safe specific absorption rate < 1.6 W/kg in all desired frequencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号