首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The problem of H control for a class of linear systems with state saturation nonlinearities is considered in this paper. By introducing a row diagonally dominant matrix with negative diagonal elements and a diagonal matrix with positive elements, the H control problem is reduced to a matrix inequality feasibility problem that can be solved by the proposed iterative linear matrix inequality algorithm. The effectiveness of the presented method is demonstrated by a numerical example. Copyright © 2009 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

2.
In this paper we shall consider the H control problem using static output feedback. The approach uses some recent results from linear algebra. The main result shows that the H control problem is solvable by a static output feedback controller if and only if there exists a positive definite matrix satisfying two certain quadratic matrix inequalities. A parametrization of all static output feedback H controllers is given.  相似文献   

3.
This paper addresses the problem of robust H control for uncertain continuous singular systems with state delay. The singular system under consideration involves state time delay and time‐invariant norm‐bounded uncertainty. Based on the linear matrix inequality (LMI) approach, we design a memoryless state feedback controller law, which guarantees that, for all admissible uncertainties, the resulting closed‐loop system is not only regular, impulse free and stable, but also meets an H‐norm bound constraint on disturbance attenuation. A numerical example is provided to demonstrate the applicability of the proposed method. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, we propose a novel design problem of robust H control for discrete‐time systems with probabilistic time delay, where both the variation range of the delay and the probability distribution of the delay taking values in an interval are available. Based on the information on the probability distribution of the delay taking values in an interval, a new modeling method is put forward, with which the probabilistic effects of the delay are reflected into a parameter matrix of certain transformed system. Based on such a new model, criteria for the H control design are derived by using a combination of the convexity of the matrix equations, the Lyapunov functional method and the linear matrix inequality technique. It is shown via numerical examples that our developed method in the paper can lead to less conservative results than those obtained by existing methods and, furthermore, if the probability distribution of the delay occurrence is available, the allowable upper bound of the delay may be larger than those derived for the case when only the variation range of the delay can be known. Copyright © 2009 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

5.
This paper focuses on the H model reduction problem of positive fractional order systems. For a stable positive fractional order system, we aim to construct a positive reduced‐order fractional system such that the associated error system is stable with a prescribed H performance. Then, based on the bounded real lemma for fractional order systems, a sufficient condition is given to characterize the model reduction problem with a prescribed H‐norm error bound in terms of a linear matrix inequality (LMI). Furthermore, by introducing a new flexible real matrix variable, the desired reduced‐order system matrices are decoupled with the complex matrix variable and further parameterized by the new matrix variable. A corresponding iterative LMI algorithm is also proposed. Finally, several illustrative examples are given to show the effectiveness of the proposed algorithms.  相似文献   

6.
In this paper the problem of H dynamic feedback control for fuzzy dynamic systems has been studied. First the problem of H dynamic feedback controller designs for complex nonlinear systems, which can be represented by Takagi‐Sugeno (T‐S) fuzzy systems, is presented. Second, based on a Lyapunov function, four new dynamic feedback H fuzzy controllers are developed by adequately considering the interactions among all fuzzy sub‐systems and these dynamic feedback H controllers can be obtained by solving a set of suitable linear matrix inequalities. Finally, two examples are given to demonstrate the effectiveness of the proposed design methods. Copyright © 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

7.
This paper presents a solution to the singular H control problem via state feedback for a class of nonlinear systems. It is shown that the problem of almost disturbance decoupling with stability plays a fundamental role in the solution of the considered problem. We also point out when the singular problem can be reduced to a regular one or solved via standard H technique. We must stress that the solution of the singular problem is obtained without making any approximation of it by means of regular problems. © 1997 John Wiley & Sons, Ltd.  相似文献   

8.
This paper is concerned with the quantized state feedback H control problem for discrete‐time linear time‐invariant systems. The quantizer considered here is dynamic and composed of an adjustable “zoom” parameter and a static quantizer. Static quantizer ranges are with practical significance and fully considered here. A quantized H controller design strategy is proposed with taking quantizer errors into account, where an iterative linear matrix inequality (LMI) based optimization algorithm is developed to minimize static quantizer ranges with meeting H performance requirement for quantized closed‐loop systems. An example is presented to illustrate the effectiveness of the proposed method. Copyright © 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

9.
The H almost disturbance decoupling problem is considered. In this paper, a nonlinear design is proposed to find a state feedback controller for bilinear systems. The closed‐loop system is internally stable and achieves disturbance attenuation in nonlinear H sense. We defined a special form of Lyapunov function, which is constructed in terms of one or a set of positive definite constant matrices. If, except of the origin of system, the corresponding polynomial of the positive definite matrix (or several polynomials relevant to the positive definite constant matrices) has (have) no zero on a given subset of state space, then we can construct a controller to solve our problem. It is found that the controller structure could be complicated, but is feasible in computation and may require optimization technique to search the solution. We consider both SIMO and MIMO cases with illustrated examples.  相似文献   

10.
In this paper, we present some computationally tractable conditions which make the constantly scaled H control synthesis problem convex. If one of the conditions proposed in this paper holds, the constantly scaled H control synthesis problem can be solved efficiently as an LMI problem. The results presented here include the existing results such as the state feedback and the full information problems as special cases. In addition, the results are generalized to the case that some of state variables are exactly available. Owing to this generalization, a larger class of problems can be reduced to convex problems, while reduced order controllers can be obtained. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, an H sampled‐data control problem is addressed for semilinear parabolic partial differential equation (PDE) systems. By using a time‐dependent Lyapunov functional and vector Poincare's inequality, a sampled‐data controller under spatially averaged measurements is developed to stabilize exponentially the PDE system with an H control performance. The stabilization condition is presented in terms of a set of linear matrix inequalities. Finally, simulation results on the control of the diffusion equation and the FitzHugh‐Nagumo equation are given to illustrate the effectiveness of the proposed design method.  相似文献   

12.
This paper develops robust stability theorems and robust H control theory for uncertain impulsive stochastic systems. The parametric uncertainties are assumed to be time varying and norm bounded. Impulsive stochastic systems can be divided into three cases, namely, the systems with stable/stabilizable continuous‐time stochastic dynamics and unstable/unstabilizable discrete‐time dynamics, the systems with unstable/unstabilizable continuous dynamics and stable/stabilizable discrete‐time dynamics, and the systems in which both the continuous‐time stochastic dynamics and the discrete‐time dynamics are stable/stabilizable. Sufficient conditions for robust exponential stability and robust stabilization for uncertain impulsive stochastic systems are derived in terms of an average dwell‐time condition. Then, a linear matrix inequality‐based approach to the design of a robust H controller for each system is presented. Finally, the numerical examples are provided to demonstrate the effectiveness of the proposed approach. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
This paper considers quadratic stabilizability and H feedback control for stochastic discrete‐time uncertain systems with state‐ and control‐dependent noise. Specifically, the uncertain parameters considered are norm‐bounded and external disturbance is an l2‐square summable stochastic process. Firstly, both quadratic stability and quadratic stabilization criteria are presented in the form of linear matrix inequalities (LMIs). Then we design the robust H state and output feedback H controllers such that the system with admissible uncertainties is not only quadratically internally stable but also robust H controllable. Sufficient conditions for the existence of the desired robust H controllers are obtained via LMIs. Finally, some examples are supplied to illustrate the effectiveness of our results.  相似文献   

14.
In this paper, we investigate the H control problem for a class of cascade switched nonlinear systems consisting of two nonlinear parts which are also switched systems using the multiple Lyapunov function method. Firstly, we design the state feedback controller and the switching law, which guarantees that the corresponding closed‐loop system is globally asymptotically stable and has a prescribed H performance level. This method is suitable for a case where none of the switched subsystems is asymptotically stable. Then, as an application, we study the hybrid H control problem for a class of nonlinear cascade systems. Finally, an example is given to illustrate the feasibility of our results. Copyright © 2008 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

15.
This paper investigates event‐triggered output feedback H control for a networked control system. Transmitted through a network under an event‐triggered scheme, the sample outputs of the plant are used to drive the dynamical output feedback controller to generate a new control signal in the discrete‐time domain. The discrete‐time control signals are also transmitted through the network to drive the plant. As a result of two types of transmission delays, the controlled plant and the dynamical output feedback controller are driven by the discrete‐time outputs and control signals at different instants of time. An interval decomposition method is introduced to place the controlled plant and the output feedback controller into the same updated time interval but with updated signals at different instants. Based on a proper Lyapunov‐Krasovskii functional, sufficient conditions are derived to ensure H performance for the controlled plant. Finally, numerical simulations are used to demonstrate the practical utility of the proposed method.  相似文献   

16.
This paper deals with the problem of H estimation for linear systems with a certain type of time-varying norm-bounded parameter uncertainty in both the state and output matrices. We address the problem of designing an asymptotically stable estimator that guarantees a prescribed level of H noise attenuation for all admissible parameter uncertainties. Both an interpolation theory approach and a Riccati equation approach are proposed to solve the estimation problem, with each method having its own advantages. The first approach seems more numerically attractive whilst the second one provides a simple structure for the estimator with its solution given in terms of two algebraic Riccati equations and a parameterization of a class of suitable H estimators. The Riccati equation approach also pinpoints the ‘worst-case’ uncertainty.  相似文献   

17.
This paper is concerned with event‐triggered H control for a class of nonlinear networked control systems. An event‐triggered transmission scheme is introduced to select ‘necessary’ sampled data packets to be transmitted so that precious communication resources can be saved significantly. Under the event‐triggered transmission scheme, the closed‐loop system is modeled as a system with an interval time‐varying delay. Two novel integral inequalities are established to provide a tight estimation on the derivative of the Lyapunov–Krasovskii functional. As a result, a novel sufficient condition on the existence of desired event‐triggered H controllers is derived in terms of solutions to a set of linear matrix inequalities. No parameters need to be tuned when controllers are designed. The proposed method is then applied to the robust stabilization of a class of nonlinear networked control systems, and some linear matrix inequality‐based conditions are formulated to design both event‐triggered and time‐triggered H controllers. Finally, two numerical examples are given to demonstrate the effectiveness of the proposed method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
This paper deals with the problem of finite-time-horizon robust H control via measurement feedback, for affine nonlinear systems with nonlinear time-varying parameter uncertainty. The problem addressed is the design of a control law, which processes the measured output and guarantees a prescribed level of closed-loop disturbance attenuation. Conditions for the existence of such a controller are obtained by solving an auxiliary control problem for a related system which is obtained from the original one by converting the parameter uncertainty into exogenous bounded energy signals. This approach allows us to apply the recently developed H nonlinear control techniques to solve the robust control problem. The problem is investigated in both the continuous- and discrete-time cases. The results are demonstrated by a simple example. © 1997 by John Wiley & Sons, Ltd.  相似文献   

19.
20.
Network induced delay in networked control systems (NCS) is inherently non‐uniformly distributed and behaves with multifractal nature. However, such network characteristics have not been well considered in NCS analysis and synthesis. Making use of the information of the statistical distribution of NCS network induced delay, a delay distribution based stochastic model is adopted to link Quality‐of‐Control and network Quality‐of‐Service for NCS with uncertainties. From this model together with a tighter bounding technology for cross terms, H NCS analysis is carried out with significantly improved stability results. Furthermore, a memoryless H controller is designed to stabilize the NCS and to achieve the prescribed disturbance attenuation level. Numerical examples are given to demonstrate the effectiveness of the proposed method. Copyright © 2009 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号