共查询到20条相似文献,搜索用时 15 毫秒
1.
Double triangular monopole‐like antenna with reconfigurable single/dual‐wideband circular polarization 下载免费PDF全文
A polarization and frequency reconfigurable circularly polarized (CP) antenna is proposed based on a novel bilateral switching mechanism. Two triangular monopole antennas are connected to each other in an L‐shaped form by a narrow link to produce a CP operation. In the proposed technique, 4 PIN‐diode‐based switches are designed with desired insertion loss and isolation, and only 2 DC‐voltage controllers. These switches are located on the links and the feed lines to realize a polarization reconfigurable feature including both right‐hand CP (RHCP) and left‐hand CP (LHCP) modes. Moreover, 2 CP states, a single wideband operation and a dual‐band operation, can be supported by this mechanism. In a special performance of the switches, CP reconfigurability can be obtained in a narrow‐band mode around 2.45 GHz. Two general simulations are performed based on the simple microstrip links and a diode‐circuit model. The measured results exhibit a wide overlapped bandwidth (AR < 3 dB and VSWR < 2) of 44.4% (1.63–2.56 GHz) with a peak gain of 2.88 dBi in the first state and 5.5% (1.22~1.29GHz) and 20.6% (2.12–2.61 GHz) with the peak gains of 0.52 and 3.0 dBi in the second state, respectively. A wide beamwidth is obtained more than 75°. This work is appropriate for L‐ and S‐band CP diversity applications. 相似文献
2.
A coplanar waveguide fed polarization reconfigurable monopole antenna is proposed in this letter. The proposed antenna consists of L‐shaped stubs placed on either side of a monopole, two p‐i‐n diodes and a slot in the ground plane. In the proposed antenna structure, the switching element is not directly connected to the feed line. Depending on the switching state of the p‐i‐n diodes, the antenna either radiates left/right circular polarization or linear polarization. To validate the proposed design, the antenna was fabricated and its performance was measured. Since the ground plane is electrically small, the effect of the cable and SMA connector on the performance of the antenna is also investigated. The measured impedance bandwidth is 66.78% (3.67 GHz to 7.35 GHz) and the axial ratio bandwidth is 13.62% (4.24‐4.86 GHz) for circular polarization and 23.61% (3.81‐4.83 GHz) impedance bandwidth for linear polarization. 相似文献
3.
This paper presents a wideband circularly polarized broadside radiation characteristics by using stacked rectangular dielectric resonator antenna (DRA) with different volumes. In this designed antenna, the wide input impedance‐ and axial ratio (AR)‐bandwidths come from three factors: stacked rectangular DR with different volumes, stepped‐shaped conformal strip associated with microstrip line as a feed and different type of partial ground plane. Here, the orthogonal TExδ11 and TEy1δ1 modes have been responsible for the generation of CP radiation in stacked rectangular DRA. Measured results show that the proposed stacked rectangular DRA with different volumes achieves input impedance bandwidth of 54.84% while AR bandwidth has been found to be 11.53%. The proposed antenna provides broadside right‐handed CP radiation pattern with gain ranges from 2.27–5.80 dBic and offers an average radiation efficiency of 89.48%, across the entire working bandwidth, respectively. Therefore, this antenna is very much useful for the ISM 2400 band applications. 相似文献
4.
A novel broadband circularly polarized monopole antenna consisting of an isosceles trapezoidal monopole antenna which is offset fed by a microstrip line is presented. By choosing an appropriate offset, it is possible to establish two orthogonal current components that are out of phase by 90° and thus producing circular polarization. The axial ratio bandwidth of the proposed antenna has been further increased by adding a vertical slot parallel to the microstrip feed line. The measured results show that the proposed antenna has a 34.57% (1.89 GHz to 2.68 GHz) 3 dB axial ratio bandwidth. The ?10 dB reflection coefficient bandwidth is 122.53% (1.04 GHz to 4.33 GHz). The advantages of the proposed antenna are simplicity and a broad 3 dB axial ratio bandwidth. 相似文献
5.
This article initially proposes a directly‐fed circular patch antenna with L‐shaped ground plane for Radio Frequency Identification (RFID) applications in the 900 MHz (902?928 MHz) ultrahigh frequency (UHF) band. To achieve circularly polarized (CP) radiation, two arc‐shaped notches are loaded into the main patch. To enhance the CP bandwidth so that the proposed antenna can also cover the UHF RFID band for Europe (866?869 MHz), a parasitic element is printed besides the main patch. Experimental measurements show that the 10‐dB return loss bandwidth of the proposed antenna was 30.95% (833?1138 MHz) and its corresponding 3‐dB axial ratio bandwidth was 8.95% (865?946 MHz). Good gain and radiation efficiency of more than 7 dBic and 90%, respectively, were also exhibited across the two desired UHF RFID bands. © 2015 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:681–687, 2015. 相似文献
6.
A microstrip antenna design with multislots embedded into the ground plane for circular polarization
A single probe‐fed square microstrip antenna with two pairs of asymmetric narrow slots loaded into the ground plane for circular polarization (CP) is studied. To allow a simple fine tuning CP mechanism, the method of loading an additional square slot into the center of the ground plane is introduced into this proposed antenna. By tuning the overall‐size of this center square slot, the CP frequency can be easily tuned with minor effects on the CP performances. Furthermore, good axial ratio (AR) value of around 0.5 is also measured at 1575 MHz, which is suitable for GPS operation. © 2012 Wiley Periodicals, Inc. Int J RF and Microwave CAE , 2013. 相似文献
7.
This article presents the design of an offset CPW‐fed slot antenna which exhibits a narrow impedance bandwidth (IBW; |S11| ≤ ?10 dB) extending from 1.20 GHz to 1.45 GHz and another wide impedance bandwidth from 1.86 GHz to 8.4 GHz thus covering almost all the conventional operating frequencies. The antenna is loaded with semicircular and rectangular stubs and meandered microstrip lines to realize circular polarization at 1.35 GHz, 3.3 GHz, 4.9 GHz, and 7.5 GHz with axial ratio bandwidth (axial ratio ≤ 3 dB) of 19.25% (1.2‐1.46 GHz), 4.24% (3.24‐3.38 GHz), 4.1%(4.8‐5 GHz), and 5.2% (7.3‐7.69 GHz) respectively thus covering the GPS, WiMAX, WLAN, and X‐band downlink satellite communication application bands. The mechanism of generation of CP is discussed using vector analysis of surface current density distribution. The gain is fairly constant in the wide IBW region with maximum fluctuation of 1.2 dB. The structure is compact with an overall layout area of 0.27λ × 0.27λ, where λ is the free‐space wavelength corresponding to the lowest circular polarized (CP) frequency. A comparison of the proposed antenna with previously reported structures is performed with respect to impedance bandwidth, compactness, number of CP bands, LHCP to RHCP isolation and gain to comprehend the novelty of the proposed design. A prototype of the proposed antenna is fabricated and the measured results are in accord with the simulated results. 相似文献
8.
The metamaterial elements and structures have been noticed for obtaining circular polarization (CP) while developing various procedures. In this paper, we have mentioned some of these cases and compared the metamaterial loads effect on antenna current distribution. We have classified them into four categories. The first case covers patch antenna based on composite right/left‐handed method, where the metamaterial has been used for changing the current distribution in the loop form. The second case has been achieved by radome and metasurface. In the third model, the interaction between feed and metamaterial load has been considered and the last case has been made by the metamaterial load with truncated structure. The metamaterial loading has been modeled based on Nicolson‐Ross or transmission/reflection techniques for extracting the permittivity and permeability. While the microstrip slot antennas are attractive for wider bandwidth, the truncated structure can change the current for achieving CP. Here, we have studied the antenna for wireless and WiMAX applications. 相似文献
9.
Neng‐Wu Liu Mei‐Jiao Sun Lei Zhu Zhi‐Hui Jia Lu‐Yang Ji Guang Fu Hui‐Li Zheng 《国际射频与微波计算机辅助工程杂志》2020,30(3)
A compact monopolar microstrip patch antenna (MPA) with enhanced‐bandwidth is proposed. In order to achieve the miniaturized patch, the zeroth‐order mode of the MPA instead of its higher‐order modes is employed at first by loading the shorting pin around the center of the patch. After that, a L‐shaped microstrip line with a shorting pin is introduced at the periphery of the patch radiator to excite an additional non‐radiative mode for bandwidth enhancement. In final, the proposed MPA is fabricated and measured. The results illustrate that the antenna generates an enhanced‐bandwidth of about 4.1% ranging from 2.39 to 2.49 GHz, which is significantly larger than that of the traditional MPA around 1%. Meanwhile, the dimensions of the radiating patch are obviously decreased down due to the employment of zeroth‐order mode, which are kept as small as about 0.17 λ0 × 0.22 λ0 × 0.026 λ0 (λ0 is the free‐space wavelength). 相似文献
10.
A broadband circularly polarized (CP) circular patch antenna with an L‐shaped ground plane and parasitic element is studied. The use of this L‐shaped ground is to achieve short probe feed connection to the circular patch, while maintaining a certain height between the circular patch and ground plane, so that good impedance matching and bandwidth enhancement can be attained. To achieve CP radiation, two notches are initially loaded diagonally into the circular patch, and to further enhance the CP bandwidth, a novel technique of loading a small size moon‐shaped parasitic element into the notched circular patch is proposed. By doing so, the CP bandwidth of proposed antenna can be tremendously increased by approximately 10%. The experimental results show that the proposed CP antenna can yield impedance bandwidth and CP bandwidth of 835–1150 MHz and 839–968 MHz, respectively, with good gain level of 7.6 dBic. Therefore, this proposed wideband CP antenna can be used for UHF (ultrahigh frequency) RFID (radio frequency identification) reader antenna that operates within the universal RFID bands (840 ? 960 MHz). © 2016 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:387–395, 2016 相似文献
11.
Sumita Shekhawat Pratibha Sekra V. K. Saxena J. S. Saini D. Bhatnagar 《国际射频与微波计算机辅助工程杂志》2011,21(4):407-412
A novel dual‐frequency broadband design of a single‐layer single‐feed circular microstrip antenna with an off‐centered Y‐slot is demonstrated in this communication. By selecting a suitable location of the Y‐slot in the circle, the proposed antenna on glass epoxy FR‐4 substrate not only resonates efficiently at two closely spaced frequencies (2.736 and 2.868 GHz) but also offers improved bandwidth (210 MHz or 7.5%) in comparison with a conventional circular microstrip patch antenna (~2%). From the measured results, almost identical broadside radiation patterns are obtained at two resonant frequencies, and the variation of less than 1 dBi in gain values is achieved in the frequency range where broadband behavior is observed. © 2011 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2011. 相似文献
12.
A wide-band circularly polarized reconfigurable antenna based on a pure water dielectric patch antenna is proposed. By changing the shape of pure water in the plexiglass container symmetrically, the circularly polarized states of the antenna can be switched. And the available bandwidth of right-hand circular polarization and left-hand circular polarization remain unchanged. The interface between pure water and air with a great difference in relative dielectric constant is equivalent to an electrical wall. When feed with an L-shaped metallic probe, the axial ratio of a wide band can be formed, and the impedance bandwidth of antenna can be fully utilized. Under the two circularly polarized states of the antenna, the measured results show that the 3-dB axial ratio bandwidth is above 24.4% for |S11| < ? 10 dB, the radiation efficiency is concentrated at 58%–71%, and the maximum gain reaches 3.5 dBi. 相似文献
13.
A broadband high‐gain circularly polarized (CP) microstrip antenna operating in X band is proposed. The circular polarization property is achieved by rotating four narrow band linearly polarized (LP) microstrip patch elements in sequence. Since the conventional series‐parallel feed network is not conducive to the miniaturization of the array, a corresponding simplified feed network is designed to realize the four‐way equal power division and sequential 90° phase shift. With this feed network, the impedance bandwidth (IBW) of the CP array is greatly improved compared with that of the LP element, while maintaining a miniaturized size. Then, parasitic patches are introduced to enhance the axial ratio bandwidth (ARBW). A prototype of this antenna is fabricated and tested. The size of proposed antenna is 0.93λ0 × 0.93λ0 × 0.017λ0 (λ0 denotes the space wavelength corresponding to the center frequency 10.4 GHz). The measured 10‐dB IBW and 3‐dB ARBW are 13.6% (9.8‐11.23 GHz), 11.2% (9.9‐11.07 GHz) respectively, and peak gain in the overlapping band is 9.8 dBi. 相似文献
14.
A new dual‐mode wideband circularly polarized rectangular dielectric resonator antenna coupled with stubs and asymmetric ground plane for WiMAX applications 下载免费PDF全文
In this article, a new radiating stub microstrip feed has been investigated with asymmetrical ground plane for generation of circular polarization (CP) in a dielectric resonator antenna (DRA). Here, asymmetrical ground plane and 3 radiating stubs with microstrip feed line are used for generation of 2 different modes namely TE11δ and TE12δ in rectangular DRA. By using mode matching concepts, these modes are responsible for enhancing the impedance bandwidth (TE12δ ie, and ) and axial ratio (AR) bandwidth (TE11δ ie, and ) in proposed antenna. Designed antenna offers measured input impedance bandwidth (|S11| < ?10 dB) and AR bandwidth (AR < 3‐dB) of 44.78%, ranging from 4.6 to 6.9 GHz and 23.32%, ranging from 4.6 to 6.9 GHz, respectively. It has been observed that proposed antenna shows left‐handed CP fields in boresight direction with average gain of 3.15 dBic and radiation efficiency of 90.54%. Designed antenna is suitable for Wi‐MAX (3.3‐3.7 GHz) applications. 相似文献
15.
In this article, a polarization reconfigurable isosceles trapezoidal monopole antenna for the circular polarization (CP) is presented. A trapezoidal monopole and the ground plane are on the same side of the dielectric substrate. The monopole is excited by a reconfigurable T‐shaped 50 Ω microstrip feed line and reconfigurable vertical slots are incorporated in the ground plane to realize switchable wideband CP. For the different switching states of the p‐i‐n diodes, linear polarization, left‐handed and right handed CP can be achieved in the boresight direction (+z direction). The antenna prototype is fabricated and tested. The measured reflection coefficient bandwidth (|S11| < ?10 dB) is 31.2% (2.13 ‐ 2.91 GHz) and axial ratio bandwidth (axial ratio < 3 dB) is 22% (2.18 ‐ 2.72 GHz) for the CP. The measured reflection coefficient bandwidth is 18.56% (2.15 ‐ 2.59 GHz) for linear polarization. 相似文献
16.
17.
A single‐fed circularly polarized square shaped wide slot antenna with modified ground plane and microstrip feed has been presented. The field in the slot is perturbed by introducing an antipodal strips section attached with a microstrip line to produce circular polarization in a wide band of frequencies. The antipodal strip section consists of a group of four strips of unequal length and separation. The presence of asymmetric perturbations in the slot is mainly responsible for exciting two orthogonal modes in the slot having equal magnitude and 90° phase difference which results in circular polarization. A wide bandwidth of 3.3 GHz (4.4 GHz‐7.7 GHz) has been achieved for an axial ratio value AR < 3 dB with the minimum axial ratio value being 0.3 dB. The impedance bandwidth for |S11| < ?10 dB ranges from 4.3 GHz to 8 GHz, and therefore covers most of the C‐band communication systems. The antenna exhibits stable radiation patterns throughout the circular polarization bandwidth with a gain around 6 dBi in entire operational bandwidth. A prototype of antenna was fabricated and measured. The antenna has a planar size 0.40λ0 × 0.40λ0 and thickness of 0.02λ0 where λ0 is the wavelength in free space at the lowest frequency. With its compact size and low profile, the antenna is a favorable choice for WLAN (5.15‐5.85 GHz) and a wide variety of C‐band wireless applications. 相似文献
18.
Investigation of higher order modes excitation through F‐shaped slot in rectangular dielectric resonator antenna for wideband circular polarization with broadside radiation characteristics 下载免费PDF全文
In this article, a wideband circularly polarized rectangular dielectric resonator antenna (RDRA) with broadside radiation characteristics has been proposed. By using modified ground plane having an F‐shaped slot, the proposed structure able to generates three sets of modes i.e., fundamental as well as higher order modes. To obtained circular polarization, an orthogonal mode (TE113) in the RDRA has been generated by using the F‐shaped slot on the modified ground plane. The resonance frequency of fundamental mode (TE111) in the rectangular dielectric resonator (DR) has been calculated by using dielectric waveguide model method. The same has been confirmed through E‐field distribution in RDRA. Here, wide axial ratio (AR) bandwidth of the proposed antenna is due to the generation of and modes. It is observed that input impedance bandwidth has been broadening with a pair of excited modes ( and modes) in the proposed antenna structure. All these modes have been excited and merged to form a wide input impedance bandwidth and wide AR bandwidth of the designed antenna. The proposed antenna shows measured input reflection coefficient (S11 < ?10 dB) of 50.55% and measured AR bandwidth (AR < 3 dB) of 14.28%. The designed antenna shows left‐handed circular polarization in broadside direction and offering an average gain and radiation efficiency of 4.29 dBic and 92.22% respectively. 相似文献
19.
为支撑海量数据传输与宽带无线通信系统需求,提出了一款宽频带双圆极化微带天线。采用微带天线作为基本辐射单元,基于层叠寄生贴片方式与加载空气腔方法展宽天线工作带宽并提高增益值,利用电容加载的三分支线定向耦合器对天线单元进行馈电进一步展宽天线带宽,并实现双圆极化辐射特性。单元电性能仿真结果良好,阻抗与轴比相对带宽达27.9%,峰值增益达到5.6dBi。基于辐射单元进行4×4阵列组合,所设计阵列天线阻抗带宽覆盖7.2 ~ 9.4 GHz,同一单元不同极化与不同单元间端口间隔离度均 ≥ 15 dB,轴比在通带内均 ≤ 3 dB,方向图仿真与测试结果吻合良好,验证了设计方案的正确性。 相似文献
20.
The design of a microstrip‐fed annular‐ring slot antenna (ARSA) with circular polarization (CP) radiation is initially studied. To obtain CP radiation with broad 3‐dB axial ratio (AR) bandwidth that can cover the WiMAX 2.3 GHz (2305–2320 MHz, 2345–2360 MHz) and WLAN 2.4 GHz (2400–2480 MHz) bands, a novel technique of extending an inverted L‐shaped slot from the bottom section of the annular‐ring is proposed. To suppress the harmonic modes induced by the CP ARSA, the technique of integrating a defected ground structure into the annular‐ring slot is further introduced. From the measured results, 10‐dB impedance bandwidth and 3‐dB AR bandwidth of 44.86 and 9.68% were achieved by the proposed harmonic suppressed CP ARSA. Furthermore, average gain and radiation efficiency of ~4.7 dBic and 71%, respectively, were also exhibited across the bands of interest. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:337–345, 2015. 相似文献