首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
In this article, a dual‐band and wideband omnidirectional circularly polarized (CP) antenna based on the vanadium dioxide (VO2) is investigated. The operating bandwidth of such an antenna can be regulated by altering the outside temperature (T), which is attained by the insulator‐metal transition of VO2. The omnidirectional CP antenna is based on a loop antenna‐dipole model, which is composed of four tilted metal and VO2 resonant units that are loaded around a cuboid and a feeding network for broadening bandwidth. The simulated results show that when T = 50°C (State I), the 10‐dB impedance bandwidth is 45.7% (1.67‐2.66 GHz), and the 3‐dB axial ratio (AR) bandwidth is 40% (1.9‐2.85 GHz). When T = 80°C (State II), the 10‐dB impedance bandwidth is 13.8% (1.62‐1.86 GHz), and the 3‐dB AR bandwidth is 21.8% (1.68‐2.09 GHz). In order to further characterize the concept of the proposed antenna, the related parameters of such an antenna are studied using simulation software HFSS.  相似文献   

2.
A single‐fed circularly polarized square shaped wide slot antenna with modified ground plane and microstrip feed has been presented. The field in the slot is perturbed by introducing an antipodal strips section attached with a microstrip line to produce circular polarization in a wide band of frequencies. The antipodal strip section consists of a group of four strips of unequal length and separation. The presence of asymmetric perturbations in the slot is mainly responsible for exciting two orthogonal modes in the slot having equal magnitude and 90° phase difference which results in circular polarization. A wide bandwidth of 3.3 GHz (4.4 GHz‐7.7 GHz) has been achieved for an axial ratio value AR < 3 dB with the minimum axial ratio value being 0.3 dB. The impedance bandwidth for |S11| < ?10 dB ranges from 4.3 GHz to 8 GHz, and therefore covers most of the C‐band communication systems. The antenna exhibits stable radiation patterns throughout the circular polarization bandwidth with a gain around 6 dBi in entire operational bandwidth. A prototype of antenna was fabricated and measured. The antenna has a planar size 0.40λ0 × 0.40λ0 and thickness of 0.02λ0 where λ0 is the wavelength in free space at the lowest frequency. With its compact size and low profile, the antenna is a favorable choice for WLAN (5.15‐5.85 GHz) and a wide variety of C‐band wireless applications.  相似文献   

3.
A compact wideband circularly polarized (CP) horn antenna with slot‐coupled feeding structure at Ku band for satellite communication is devised. The proposed design is based on a square aperture horn antenna with two orthogonal ridges, which is fed by nonuniform curved slot along the diagonal of the horn on the bottom cavity. And in order to improve the impedance matching, a staircase typed ridge is connected the feeding probe as a matching network. Moreover, two orthogonal ridges are excited with a tapered slot coupled by the staircase ridges via feeding probe. Wideband CP performance is achieved with an overall physical dimension of 9 mm × 9 mm × 14 mm (0.045λ0 × 0.045λ0 × 0.07λ0 at frequency of 15 GHz). It is experimentally demonstrated that the proposed antenna achieves: a wide 10‐dB return loss bandwidth of about 2.4 GHz, a 3‐dB axial ratio bandwidth of 1 GHz, and a peak gain of 6.5 dBi.  相似文献   

4.
In this article, a novel inverted L‐shaped microstrip‐fed wideband circularly polarized (CP) modified square‐slot antenna is designed. By cutting a pair of triangle chamfers and introducing a pair of triangle patches at the square‐slot, the antenna achieves a wideband CP radiation. Moreover, CP performance of the antenna can also be remarkably enhanced by protruding an L‐shaped strip and embedding a tuning rectangle slot into the slot ground. The measured results demonstrate that the axial‐ratio bandwidth for AR < 3 is 75.1% (from 4.45 to 9.8 GHz) and the impedance bandwidth (|S11| < ?10 dB) reaches 65.8% (from 4.95 to 9.8 GHz). In addition, surface current studies are performed to illustrate the operating mechanism of CP operation, and the antenna has bidirectional radiation characteristics with an average gain of ~4 dBic within the CP band.  相似文献   

5.
A simple design of circularly polarized slot‐patch antenna array with broadband operation and compact size is presented in this article. The antenna element consists of a circular slot and a semicircular patch, which are etched on both sides of a substrate. For the gain and axial ratio (AR) bandwidth enhancement, its array antennas are implemented in a 2 × 2 arrangement and fed by a sequential‐phase feeding network. The final 2 × 2 antenna array prototype with compact lateral dimension of 0.8λL × 0.8λL (λL is the lowest frequency within AR bandwidth) yielded a measured impedance bandwidth of 103.83% (2.76‐8.72 GHz) and a measured AR bandwidth of 94.62% (2.45‐6.85 GHz). The peak gain values within the AR bandwidth are from 2.85 to 8.71 dBi. A good agreement between the simulated and measured results is achieved. This antenna array is suitable for multiservice wireless systems covering WiMAX, WLAN and C‐band applications such as satellite communications.  相似文献   

6.
A broadband circularly polarized (CP) circular patch antenna with an L‐shaped ground plane and parasitic element is studied. The use of this L‐shaped ground is to achieve short probe feed connection to the circular patch, while maintaining a certain height between the circular patch and ground plane, so that good impedance matching and bandwidth enhancement can be attained. To achieve CP radiation, two notches are initially loaded diagonally into the circular patch, and to further enhance the CP bandwidth, a novel technique of loading a small size moon‐shaped parasitic element into the notched circular patch is proposed. By doing so, the CP bandwidth of proposed antenna can be tremendously increased by approximately 10%. The experimental results show that the proposed CP antenna can yield impedance bandwidth and CP bandwidth of 835–1150 MHz and 839–968 MHz, respectively, with good gain level of 7.6 dBic. Therefore, this proposed wideband CP antenna can be used for UHF (ultrahigh frequency) RFID (radio frequency identification) reader antenna that operates within the universal RFID bands (840 ? 960 MHz). © 2016 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:387–395, 2016  相似文献   

7.
A very compact ultra‐wideband (UWB) slot antenna with three L‐shaped slots for notched‐band characteristics is presented in this article. The antenna is designed and fabricated using a new stepped slot with different size, integrated in the ground plane, and excited by a 50 Ω microstrip transmission line. The stepped slot is used to minimize the dimensions of the antenna and to achieve an impedance bandwidth between 2.65 and 11.05 GHz with voltage standing wave ratio (VSWR) less than 2. The length of the stepped slot is equal to a quarter wavelength to create a resonance in the desired frequency. Three L‐shaped slots with various sizes are etched in the ground plane to reject three frequency bands in C‐band (3.7‐4.2 GHz), WLAN (5.15‐5.825 GHz), and X‐band (7.25‐7.75 GHz), respectively. The notched‐band frequency can be controlled by changing the length of the L‐shaped slot. The proposed antenna has a very small size (20.25 × 8 × 1.27 mm3) compared with previous works. The measured and simulated results show a good agreement in terms of radiation pattern and impedance matching.  相似文献   

8.
An asymmetric‐metasurface based wideband circularly polarized (CP) microstrip antenna using a coaxial probe is proposed for L‐band applications. The antenna involves a stacked asymmetric‐metasurface, a radiating rectangular‐patch and a coaxial feed. An asymmetric‐metasurface is designed using rectangular unit cells and smaller size unit cells along one of the diagonal lines. The asymmetric‐metasurface is placed above a radiating rectangular‐patch with support of foam layer to achieve a wideband CP radiation. The measured performance of the prototype antenna achieves an impedance bandwidth (?10 dB return loss bandwidth) of 15.7% (1.58‐1.85 GHz) with CP bandwidth (3‐dB axial ratio) of 13% (1.58‐1.80 GHz) and gain of ≥9 dBic.  相似文献   

9.
A dual mode square‐ring defected ground waveguide (SR‐DGW) with defected square patch is first proposed to excite a single‐feed dual mode circularly polarized (CP) patch antenna, which can improve the impedance bandwidth and achieve the CP radiation pattern. The defected square patch is called the perturbation element. By optimizing the size of the perturbation, the degenerate modes of the dual mode SR‐DGW are split and their orthogonal modes can be excited simultaneously. Due to the dual mode of the SR‐DGW, the TM01 mode, and TM10 mode of the square patch antenna are excited simultaneously, which can improve the impedance bandwidth of the antenna. Meanwhile, owing to the orthogonal modes, CP radiation pattern of the antenna is obtained. Then, for a better impedance matching, an L‐shaped spurline embedded in the feedline is introduced. The simulated and measured results show a good performance of the proposed antenna. The measured ?10 dB impedance bandwidth is 10.4% (3.56 GHz‐3.95 GHz). The measured 3 dB axial ratio bandwidth is 5.36% (3.63 GHz‐3.83 GHz). Detailed designs and experiments are described and discussed.  相似文献   

10.
In this article, a novel dual‐band circularly polarized (CP) dielectric resonator antenna (DRA) for millimeter‐wave (MMW) band is presented. The rectangular dielectric resonator with layered truncated corners is excited by a microstrip‐coupled cross‐slot. CP radiations in the lower band are realized by utilizing two quasi‐TE111 modes operating at 21.7 GHz and 23.8 GHz, while CP radiations in the upper band are obtained by exciting a quasi‐TE113 mode at 28.2 GHz. The dual‐band DRA is fabricated and measured. Due to the higher order mode, the average gain of the DRA in the upper band is about 3 dB higher than that in the lower band. The measured impedance bandwidths (|S11| < ?10 dB) are 17.0% (20.5‐24.3 GHz) and 15.2% (26.1‐30.4 GHz), while the measured axial ratio (AR) bandwidths (AR < 3 dB) are 12.8% (21.2‐24.1 GHz) and 5% (27.4‐28.8 GHz). In addition, the peak gain values are 5 and 8 dBic.  相似文献   

11.
This article presents a simple design of circularly polarized (CP) antenna with low profile and wideband operation characteristics. To achieve these desirable features, a truncated corner squared patch is chosen as primary radiating source and surrounded by periodic metallic plates for bandwidth enhancement. Notably, all the radiating elements are designed on a single layer of substrate using printed circuit techniques, which significantly reduces the design complexity. The final prototype with overall size of 0.60λo × 0.60λo × 0.05λo (λo is free‐space wavelength at the center operating frequency) was fabricated and tested. Measured results show that the proposed antenna has wide operation bandwidth of 19.7% (5.1‐6.2 GHz). Additionally, broadside gain ranging from 5.0 to 6.9 dBic is also attained within the operating band. In comparison with the other reported antennas in literature, the proposed one has the simplest design architecture with competitive operating bandwidth.  相似文献   

12.
This letter investigates an integrated antenna configuration for WLAN/WiMAX applications. The proposed composite antenna configuration is simply the grouping of ring dielectric resonator along with reformed square‐shaped slot antenna. Three significant characteristics of proposed article are: (1) aperture act as magnetic dipole and excite HE11δ mode in ring dielectric resonator antenna; (2) reforming of square aperture generates orthogonal modes in ring DRA and creates CP in lower frequency band; (3) annular‐shaped Microstrip line along with reformed square aperture creates CP wave in upper frequency band. With the purpose of certifying the simulated outcomes, prototype of proposed structure is fabricated and tested. Good settlement is to be got between experimental and software generated outcome. Experimental outcomes show that the proposed radiating structure is operating over 2 frequency bands that is, 2.88‐3.72 and 5.4‐5.95 GHz. Measured 3‐dB axial ratio bandwidth in lower and upper frequency band is approximately 9.52% (3.0‐3.4 GHz) and 5.85% (5.64‐5.98 GHz), respectively. These outcomes indicate that the proposed composite antenna structure is appropriate for WLAN and WiMAX applications.  相似文献   

13.
This article presents design and analysis of three wide band zeroth‐order resonance antennas (antennas I, II, and III) using composite right and left‐handed transmission line (CRLH‐TL) approach. Coplanar waveguide technology, single layer via‐less structures are used to have the design flexibility. The bandwidth characteristics are analyzed by using lumped parameters of CRLH‐TL. By introducing a simple slot in the ground plane of antenna I both bandwidth enhancement and circularly polarization characteristics are achieved in antenna II. Another quarter wave L‐shaped slot has been introduced in the ground plane of antenna II to introduce a notch band in the frequency response of antenna III. Achieved measured 10 dB return loss bandwidth of antenna I and antenna II are 960 (3.3‐4.26 GHz) and 2890 MHz (2.77‐5.66 GHz), respectively. Antenna III offers measured 10 dB return loss bandwidth of 3220 MHz (2.32‐5.54 GHz) with a band notch from 2.39 to 2.99 GHz that isolates the 2.4 GHz WLAN and 3.5 GHz WiMAX band. Antenna II and antenna III have circular polarization property with measured axial ratio bandwidth of 440 MHz. The measured peak realized gain of antennas II and III is around 1.53‐2.9 dBi.  相似文献   

14.
A novel three‐dimensional (3D) printed, wideband, and low cost bull's eye antenna is proposed and designed for Ku‐band applications. The proposed antenna covers entire Ku‐band satellite communication bands starting from 10.5 GHz to 14.5 GHz. The antenna structure consists of dual‐cavity radiating aperture surrounded by a circular groove. With the addition of cavity and corrugation, the antenna gain is increased more than 6 dB. The antenna is fabricated using 3D printing technology and conductive painting. Measurement results indicate that the antenna has 72% fractional bandwidth from 8 GHz to 17 GHz. Measured antenna peak gain is 13.5 dBi at 13 GHz and no less than 11.5 dBi throughout the entire Ku band.  相似文献   

15.
A circularly polarized printed antenna using an asymmetric open‐slot is designed in this paper. The presented antenna consists of conducting ground plane with open wide‐slot, fed electromagnetically by a microstrip feedline. The slot and feedline are positioned at the edge of the ground plane and substrate, hence making the antenna asymmetric. The measured results show that the |S11| < ?10 dB impedance bandwidth is 125% (3.2‐14 GHz) and the broadband axial ratio bandwidth is 61% (3.2‐6 GHz). The antenna is very simple and has a small size of 25 mm × 25 mm, making it attractive for compact wireless WLAN, ISM, WiMAX, and C‐band applications.  相似文献   

16.
A microstrip antenna with dual‐band reconfigurable circular polarization (CP) characteristics in Wireless Local Area Network (WLAN) and Worldwide Interoperability for Microwave Access (WiMAX) bands is presented in this article. The proposed antenna has a symmetrical U‐shaped slot with PIN diodes on the ground plane. The slotted ground generates a resonant mode for broad impedance‐band width, and excites contrary CP state at 2.45 GHz for WLAN and 3.4 GHz for WiMAX, respectively. Because switching the states of PIN diodes on the slot can redirect the current path, the CP state of the proposed antenna can be simply switched between the right‐handed CP and left‐handed CP. The proposed antenna has a low profile and a simple structure. Measured results of the fabricated antenna prototype are carried out to verify the simulation analysis. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:109–114, 2015.  相似文献   

17.
A wideband circularly polarized (CP) dielectric resonator antenna (DRA) loaded with the partially reflective surface for gain enhancement is presented in this article. First, the DRA is excited by a microstrip line through modified stepped ring cross‐slot to generate the circular polarization. Four modified parasitic metallic plates are sequentially placed around the DRA for greatly widening the axial‐ratio bandwidth. Then, a partially reflective surface is introduced for enhancing the gain performance and further improving the CP bandwidth as well. Finally, an optimized prototype is fabricated to verify the design concept. The measured results show that the proposed DRA achieves 54.3% impedance bandwidth (VSWR<2) and 54.9% 3‐dB AR bandwidth. Besides, its average and peak gains are 10.7 dBic and 14.2 dBic, respectively. Wide CP band and high gains make the proposed DRA especially attractive for some broadband wireless applications such as satellite communication and remote sensing.  相似文献   

18.
A circularly polarized multiple‐input multiple‐output (MIMO) antenna is presented for global system for mobile (GSM) (710 MHz) and lower long term evolution (LTE) (900 MHz) frequency bands. The antenna consists of four ports with four impedance transformers on the bottom substrate and elliptical rings on the upper substrates. Impedance transformers include open stub and irregular microstrip lines in order to control impedance matching and resonant frequencies. Two upper substrates that contain orthogonal elliptical rings cause the circular polarization property of the proposed antenna. The results of measurement for the presented antenna show its performance with S‐parameters of less than ?10 dB in the frequency ranges of 699‐750 MHz for GSM and 880‐1115 MHz for lower LTE applications. Also, the gain and radiation efficiency are higher than 5dBi and 70%, respectively.  相似文献   

19.
A multilayered circularly polarized (CP), dual‐band, stacked slit‐/slotted‐patch antenna with compact size and with compact rectifier is offered for RF energy harvesting systems. The compact dual‐band CP antenna size is able to achieve by stacking slotted‐circular‐patch (SCP) on the substrate above the tapered‐slit‐octagon patch (TSOP). Dual‐band CP radiation is realized by stacking the SCP on the TSOP and the microstrip feedline with metallic‐via to SCP. Eight‐tapered‐slit with length difference of 6.25% are embedded along the octagonal directions symmetrically on the TSOP from the patch's center and two unequal size circular slots are embedded in diagonal axis onto SCP to produce dual‐orthogonal modes with almost equal magnitude for CP waves. The designed antenna is realized measured gain of greater than 5.2 dBic across the band (0.908‐0.922 GHz) with maximum gain of 5.41 dBic at 0.918 GHz and gain of greater than 6.14 dBic across the band (2.35‐2.50 GHz) with maximum gain of 7.94 dBic at 2.485 GHz. An overall antenna volume is 0.36λ o × 0.36λ o × 0.026λ o (λ o is free space wavelength at 0.9 GHz). A compact composite right‐/left‐handed (CRLH) based rectifier with dual‐band at 0.9 and 2.45 GHz is designed, prototyped, and measured. The right‐handed (RH) part of the CRLH transmission line (TL) is formed by a microstrip line. The left‐handed (LH) part of the CRLH‐TL is formed by lumped components. The measured RF‐DC conversion efficiency is 43% at 0.9 GHz and 39% at 2.45 GHz with rectifier size of 0.18λ o × 0.075λ o × 0.0002λ o at 0.9 GHz.  相似文献   

20.
A dual‐band circularly polarized (CP) antenna with harmonic rejection property is proposed in this paper. Four T‐shaped slits and two corner cuts are etched on the proposed microstrip patch antenna. Those structures can be used to tune the resonant frequencies of TM01 mode and TM03 mode of the antenna into the desired bands of 2.45 and 5.8 GHz with CP radiation. A shunt transmission line is employed not only to improve the impedance matching at 5.8 GHz but also to suppress the radiation at 4.9 GHz (second harmonic of 2.45 GHz). Meanwhile, two L‐shaped slits are etched on the feeding line to realize the harmonic rejection at 11.6 GHz (second harmonic of 5.8 GHz). The simulated and measured results show that this antenna has good dual‐band CP radiation property and harmonic suppression performance, which makes it a good candidate for the wireless energy harvesting system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号