首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Combined cycle configuration has the ability to use the waste heat from the gas turbine exhaust gas using the heat recovery steam generator for the bottoming steam cycle. In the current study, a natural gas‐fired combined cycle with indirectly fired heating for additional work output is investigated for configurations with and without reheat combustor (RHC) in the gas turbine. The mass flow rate of coal for the indirect‐firing mode in circulating fluidized bed (CFB) combustor is estimated based on fixed natural gas input for the gas turbine combustion chamber (GTCC). The effects of pressure ratio, gas turbine inlet temperature, inlet temperatures to the air compressor and to the GTCC on the overall cycle performance of the combined cycle configuration are analysed. The combined cycle efficiency increases with pressure ratio up to the optimum value. Both efficiency and net work output for the combined cycle increase with gas turbine inlet temperature. The efficiency decreases with increase in the air compressor inlet temperature. The indirect firing of coal shows reduced use with increase in the turbine inlet temperature due to increase in the use of natural gas. There is little variation in the efficiency with increase in GTCC inlet temperature resulting in increased use of coal. The combined cycle having the two‐stage gas turbine with RHC has significantly higher efficiency and net work output compared with the cycle without RHC. The exergetic efficiency also increases with increase in the gas turbine inlet temperature. The exergy destruction is highest for the CFB combustor followed by the GTCC. The analyses show that the indirectly fired mode of the combined cycle offers better performance and opportunities for additional net work output by using solid fuels (coal in this case). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
本文叙述了压气机采用可调静叶对单轴恒速燃气轮机变工况性能的影响。通过计算得到了燃气轮机变工况性能曲线,分析了不同的最大排气温度对静叶调节区的影响,以及在部分负荷下机组效率变化的影响。叙述了压气机静叶调节时对由单轴恒速燃气轮机组成的联合循环的影响,指出这时能改善部分负荷下的效率,因而得到了实际应用。  相似文献   

3.
建立了一种基于热力学定律的离心式压气机动态模型,该模型仅使用压气机的基本结构参数而不需要试验图谱。压气机模型与涡轮模型一起构成涡轮增压器动态模型,并与柴油机模型进行了联合匹配仿真。研究结果表明:该模型准确可信,扩大了压气机模型的工作范围,可有效改善柴油机模型在低负荷、低转速时的动态性能。模型计算速度快,实时性好,可用于柴油机性能优化、控制系统开发等多个领域。  相似文献   

4.
In this study, we first consider developing a thermodynamic model of solid oxide fuel cell/gas turbine combined heat and power (SOFC/GT CHP) system under steady-state operation using zero-dimensional approach. Additionally, energetic performance results of the developed model are compared with the literature concerning SOFC/GT hybrid systems for its reliability. Moreover, exergy analysis is carried out based on the developed model to obtain a more efficient system by the determination of irreversibilities. For exergetic performance evaluation, exergy efficiency, exergy output and exergy loss rate of the system are considered as classical criteria. Alternatively, exergetic performance coefficient (EPC) as a new criterion is investigated with regard to main design parameters such as fuel utilization, current density, recuperator effectiveness, compressor pressure ratio and pinch point temperature, aiming at achieving higher exergy output with lower exergy loss in the system. The simulation results of the SOFC/GT CHP system investigated, working at maximum EPC conditions, show that a design based on EPC criterion has considerable advantage in terms of entropy-generation rate.  相似文献   

5.
The integration of an aqua‐ammonia inlet air‐cooling scheme to a cooled gas turbine‐based combined cycle has been analyzed. The heat energy of the exhaust gas prior to the exit of the heat recovery steam generator has been chosen to power the inlet air‐cooling system. Dual pressure reheat heat recovery steam generator is chosen as the combined cycle configuration. Air film cooling has been adopted as the cooling technique for gas turbine blades. A parametric study of the effect of compressor–pressure ratio, compressor inlet temperature, turbine inlet temperature, ambient relative humidity, and ambient temperature on performance parameters of plants has been carried out. It has been observed that vapor absorption inlet air cooling improves the efficiency of gas turbine by upto 7.48% and specific work by more than 18%, respectively. However, on the adoption of this scheme for combined cycles, the plant efficiency has been observed to be adversely affected, although the addition of absorption inlet air cooling results in an increase in plant output by more than 7%. The optimum value of compressor inlet temperature for maximum specific work output has been observed to be 25 °C for the chosen set of conditions. Further reduction of compressor inlet temperature below this optimum value has been observed to adversely affect plant efficiency. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
This study provides a computational analysis to investigate the effects of cycle pressure ratio, turbine inlet temperature (TIT), and ambient relative humidity (φ) on the thermodynamic performance of an indirect intercooled reheat regenerative gas turbine cycle with indirect evaporative cooling of the inlet air and evaporative aftercooling of the compressor discharge. Combined first and second‐law analysis indicates that the exergy destruction in various components of gas turbine cycles is significantly affected by compressor pressure ratio and turbine inlet temperature, and is not at all affected by ambient relative humidity. It also indicates that the maximum exergy is destroyed in the combustion chamber; which represents over 60% of the total exergy destruction in the overall system. The net work output, first‐law efficiency, and the second‐law efficiency of the cycle significantly varies with the change in the pressure ratio, turbine inlet temperature and ambient relative humidity. Results clearly shows that performance evaluation based on first‐law analysis alone is not adequate, and hence more meaningful evaluation must include second‐law analysis. Decision makers should find the methodology contained in this paper useful in the comparison and selection of gas turbine systems. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
《Energy Conversion and Management》2005,46(13-14):2053-2067
This paper presents the exergetic analysis and optimization of a transcritical carbon dioxide based heat pump cycle for simultaneous heating and cooling applications. A computer model has been developed first to simulate the system at steady state for different operating conditions and then to evaluate the system performance based on COP as well as exergetic efficiency, including component wise irreversibility. The chosen system includes the secondary fluids to supply the heating and cooling services, and the analyses also comprise heat transfer and fluid flow effects in detail. The optimal COP and the exergetic efficiency were found to be functions of compressor speed, ambient temperature and secondary fluid temperature at the inlets to the evaporator and gas cooler and the compressor discharge pressure. An optimization study for the best allocation of the fixed total heat exchanger inventory between the evaporator and the gas cooler based on heat transfer area has been conducted. The exergy flow diagram (Grassmann diagram) shows that all the components except the internal heat exchanger contribute significantly to the irreversibilities of the system. Unlike a conventional system, the expansion device contributes significantly to system irreversibility. Finally, suggestions for various improvement measures with resulting gains have been presented to attain superior system performance through reduced component irreversibilities. This study is expected to offer useful guidelines for system design and its optimisation and help toward energy conservation in heat pump systems based on transcritical CO2 cycles.  相似文献   

8.
In this study, the gas turbine power plant with preheater is modeled and the simulation results are compared with one of the gas turbine power plants in Iran namely Yazd Gas Turbine. Moreover, multiobjective optimization has been performed to find the best design variables. The design parameters of the present study are selected as: air compressor pressure ratio (rAC), compressor isentropic efficiency (ηAC), gas turbine isentropic efficiency (ηGT), combustion chamber inlet temperature (T3) and gas turbine inlet temperature. In the optimization approach, the exergetic, economic and environmental aspects have been considered. In multiobjective optimization, the three objective functions, including the gas turbine exergy efficiency, total cost rate of the system production including cost rate of environmental impact and CO2 emission, have been considered. The thermoenvironomic objective function is minimized while power plant exergy efficiency is maximized using a genetic algorithm. To have a good insight into this study, a sensitivity analysis of the results to the interest rate as well as fuel cost has been performed. In addition, the results showed that at the lower exergetic efficiency in which the weight of thermoenvironomic objective is higher, the sensitivity of the optimal solutions to the fuel cost is much higher than the location of Pareto Frontier with the lower weight of thermoenvironomic objective. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
《Exergy》2001,1(3):202-208
Certain thermodynamic aspects of cryogenic turbines are investigated based on operational data provided by a cryogenic test facility. The cryogenic turbine is intended to produce power by replacing the throttling valve used in natural gas liquefaction plants. The turbine operates at very low temperatures; it admits liquefied natural gas (LNG) at a high pressure and discharges it at a low pressure. The temperature change of LNG in the expansion process through the cryogenic turbine is studied and compared with the temperature change through the throttling valve. It is found that the temperature will be about 2 C smaller at the turbine exit than that at the throttling valve exit for the same inlet state and exit pressure. To establish a suitable model for the assessment of cryogenic turbine performance, the isentropic efficiency, the hydraulic efficiency, and the exergetic efficiency are studied and compared. The hydraulic efficiency is determined to be the only feasible method to assess the performance of cryogenic turbines.  相似文献   

10.
Cavern storage is a proven energy storage technology, capable of storing energy in the form of compressed air inside a cavern. The Huntorf plant and the Alabama plants use this technology to store electrical energy during the off‐peak load hours by compressing the air inside a cavern and then using this compressed air during gas turbine operation to generate electricity during peak load demand hours. The advantage of doing this is that it increases the efficiency of gas turbine operation while meeting the grid generation and the load balance. The operation of a typical compressed air energy storage (CAES)–based gas turbine plant involves the operation of several components, including the compressor, the cavern storage, the combustor, the turbine, and so on. The dynamics of the plant as a whole depends on the performance of the individual components. The focus of this article is to develop a Simulink‐based models for each of the individual components, which can then be assembled appropriately to design an entire CAES plant. As an illustration, a case study for the Huntorf CAES plant is presented with the developed models. A typical daily operation of the Huntorf plant is simulated and compared with the reported Huntorf plant data. The model accurately captures the reported dynamics of the cavern storage. In addition, the reported quantities like the compressor power consumption, the turbine power generation, and the temperature at different junctions of the CAES plant match well with the simulated results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
A scroll expander and scroll compressor for a 10‐kW class Ericsson engine utilizing solar energy as heat source has been suggested. Orbiting scroll members of the expander and compressor were designed to have a base plate with double‐sided wrap structure for compact size and axial gas force cancellation. For axial compliance of the scroll machines, a back pressure chamber was created on each fixed scroll. In order to compensate for the thermal expansion, flexible coupling between the orbiting scroll base plate and the scroll plate holders and sliding keys between the fixed scroll and the supporting frame were designed. Common shafts were shared by the expander and compressor for direct power transmission. For high‐ and low‐side pressures of 6 and 2.5 MPa, respectively, and expander inlet temperature of 700°C, the proposed engine efficiency was estimated to be 7.3%. The engine efficiency strongly depends on the expander and compressor efficiencies as well as on the regenerator efficiency. The shaft output of the designed scroll expander was calculated to be 38.84 kW, while the input power for the scroll compressor was 27.97 kW, yielding 10.87 kW for the engine output. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
In this study, the performance of ideal open cycle gas turbine system was examined based on its thermodynamic analysis. The effects of some parameters, such as compressor inlet temperature (CIT), pressure ratio (PR) and the turbine inlet temperature (TIT), on the performance parameters of open cycle gas turbine were discussed. The turbine net power output, the thermal efficiency and the fuel consumption of the turbine were taken as the performance parameters. The values of these parameters were calculated using some basic cycle equations and variables values of thermodynamic properties. Other variables such as lower heating value, combustion efficiency and isentropic efficiencies of compressor and turbine were assumed to be constant. The result showed that the net power output and the thermal efficiency increased by a decrease in the CIT and increase in the TIT and PR values. If it is aimed to have a high net power output and the thermal efficiency for the turbine, the CIT should be chosen as low as possible and the TIT should be chosen as high as possible. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
《Exergy》2002,2(3):147-151
This paper shows how the heat reclaimed from the exhaust gas of a gas turbine engine can be used to convert dilute ethyl alcohol (“beer”) to a fuel that can used to power the engine. Ordinarily, there is not enough heat available to distil the weak liquor to sufficient amounts of a strong product (>90%), due to high exergy destruction. In this design, a combination of destructive distillation and ordinary distillation is used, the wet product then being sent to a reformer for an endothermic shift reaction. The high temperature gas is now ready to burn in a gas turbine engine (or high temperature fuel cell). Water in the low temperature stack gas can be reclaimed in a cooling tower, if desired, so as to have no net loss of water for the system. The exergetic (Second Law) efficiency for power production is nearly 50%.  相似文献   

14.
Y.G. Li  P. Pilidis 《Applied Energy》2010,87(1):340-348
Accurate performance simulation and estimation of gas turbine engines is very useful for gas turbine manufacturers and users alike and such a simulation normally starts from its design-point. When some of the engine component parameters for an existing engine are not available, they must be estimated in order that the performance analysis can be started. Therefore, the simulated design-point performance of an engine may be slightly different from its actual performance. In this paper, a Genetic Algorithm (GA) based non-linear gas turbine design-point performance adaptation approach has been presented to best estimate the unknown component parameters and match available design-point engine performance. In the approach, the component parameters may be compressor pressure ratios and efficiencies, turbine entry temperature, turbine efficiencies, engine mass flow rate, cooling flows, by-pass ratio, etc. The engine performance parameters may be thrust and SFC for aero engines, shaft power and thermal efficiency for industrial engines, gas path pressures and temperatures, etc. To select the most appropriate to-be-adapted component parameters, a sensitivity analysis is used to analyze the sensitivity of all potential component parameters against the engine performance parameters. The adaptation approach has been applied to an industrial gas turbine engine to test the effectiveness of the approach. The approach has also been compared with a non-linear Influence Coefficient Matrix (ICM) based adaptation method and the advantages and disadvantages of the two adaptation methods have been compared with each other. The application shows that the sensitivity analysis is very useful in the selection of the to-be-adapted component parameters and the GA-based adaptation approach is able to produce good quality engine models at design-point. Compared with the non-linear ICM-based method, the GA-based performance adaptation method is more robust but slower in computation and relatively less accurate.  相似文献   

15.
A research project is on going, at the University of Padova, to develop a 200 N static-thrust engine to be used for both didactic and research activities. This paper describes in detail all the phases required to set-up such an engine, including design, manufacturing and operation. The jet engine features a single-stage centrifugal compressor developing 2.66:1 compression ratio at 60,000 rpm, a direct-flow annular combustion chamber and a single-stage axial turbine with 950 K turbine-inlet temperature (TIT). All the design and manufacturing details are provided, as well as the operation procedure together with experimental results.  相似文献   

16.
By combining heat and power generation, mini‐combined and micro‐combined heat and power systems (MCHP) provide an efficient, decentralised means of power generation that can complement the composition of the electricity generation mix. Dynamic tools capable of handling transient system behaviour are required to assess MCHP efficiency beyond a mere static analysis based on steady‐state design parameters. Using a simulation of a cogeneration system, we combine exergetic definitions for different operational system states to quantify the overall system efficiency continuously over the whole period of operation. The concept of exergy allows direct comparison of different forms of energy. A sensitivity analysis was performed where we quantified the effect on MCHP overall performance under varying engine rotational speed, thermal energy storage size and fluid storage temperature in a range of MCHP simulations. We found that the exergetic quantity of natural gas used by the MCHP decreased slightly at higher engine speeds (?2% to ?4%). While the total amount of electricity generated is almost constant across the range of different engine output, more thermal exergy (up to +21%) can be recovered when the engine is operating at elevated speeds. Furthermore, selection of specific optimal thermal storage fluid temperatures can aid in improving system efficiency. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
A capillary tube‐based CO2 heat pump is unique because of the transcritical nature of the system. The transcritical cycle has two independent parameters, pressure and temperature, unlike the subcritical cycle. A comparative study for various operating conditions, based on system COP and exergetic efficiency, of a capillary tube and a controllable expansion valve‐based transcritical carbon dioxide heat pump systems for simultaneous heating and cooling at 73 and 4°C, respectively, is presented here. Two optimized capillary tubes having diameter of 1.5 and 1.6 mm are compared with an equivalent controllable throttle valve. Heat transfer and fluid flow effects are included in the gas cooler and evaporator model and capillary tube employs the homogeneous flow model to simulate two‐phase flow. Subcritical and supercritical thermodynamic and transport properties of CO2 are calculated employing a precision in‐house property code. Optimization of effective distribution of total heat exchanger area ratio between gas cooler and evaporator is investigated. The exergetic efficiency is better in case of the capillary tube than that of a controllable throttle valve‐based system. Capillary tube‐based system is shown to be quite flexible regarding changes in ambient temperature, almost behaving to offer an optimal pressure control just like the controllable expansion valve yielding both, maximum system COP and maximum exergetic efficiency. Relatively at a smaller diameter, the capillary tube exhibits better exergetic efficiency. Capillary tube length is the critical parameter that influences system optimum conditions. The exergy flow diagram exhibits that compressor, gas cooler and capillary tube contribute a larger share, in that order, to system irreversibility. It is fairly established in this study that a capillary tube can be a good engineering option for small capacity systems in lieu of an expansion valve, which has been thought of as the only possible solution to attain the pressure optimization, an important feature of all transcritical CO2 systems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
船用三轴燃气轮机性能退化指标体系的构建   总被引:1,自引:0,他引:1       下载免费PDF全文
从燃气轮机整体性能、气路部件、滑油系统、结构振动等方面,较为全面地构建了船用三轴燃气轮机性能退化指标体系。提出了表征整机性能退化的排温裕度、热损失指标、功率不足指标、额外热功比、热效率比等指标。明确了表征气路部件退化的退化因子的概念,提出了绝热效率退化因子、流量退化因子、喘振裕度、热电偶分散度等表征压气机、涡轮、燃烧室等气路部件退化的指标。提出了构建数学模型、统计三限值法、小偏差法和卡尔曼滤波等退化指标的求解和分析方法,并进行了实例分析。为进一步开展燃气轮机性能退化状态评估构建了基本框架。  相似文献   

19.
C. Casci  M. Gaia 《Energy》1984,9(7):555-564
A significant fraction of the gaseous fuel supplied to industry will be used in medium- and small-size cogeneration plants. In this paper, a gas turbine and a gas engine of about 800 kW power output are compared at full and part load operation. When low-temperature heat (e.g., for space heating) is produced, the higher exhaust losses of the gas turbine yield a lower system efficiency, particularly at part load. A scheme is proposed to recover the exhaust gas energy by cooling to a temperature near ambient. The system features a heat pump to raise the recovered heat temperature to a usable level and an organic Rankine cycle (ORC) engine to drive the heat pump. The ORC engine uses the high-temperature fraction of the heat recovered from the exhaust. The data for the ORC engine are derived from an actual experimental engine. The performance is calculated for the system at full load.  相似文献   

20.
Accurate performance simulation and understanding of gas turbine engines is very useful for gas turbine manufacturers and users alike and such a simulation normally starts from its design point. When some of the engine component parameters for an existing engine are not available, they must be estimated in order that the performance analysis can be started. Therefore, the simulated design point performance of an engine may be slightly different from its actual performance. In this paper, two nonlinear gas turbine design-point performance adaptation approaches have been presented to best estimate the unknown component parameters and match available design point engine performance, one using a nonlinear matrix inverse adaptation method and the other using a Genetic Algorithm-based adaptation approach. The advantages and disadvantages of the two adaptation methods have been compared with each other. In the approaches, the component parameters may be compressor pressure ratios and efficiencies, turbine entry temperature, turbine efficiencies, engine mass flow rate, cooling flows, and bypass ratio, etc. The engine performance parameters may be thrust and SFC for aero engines, shaft power, and thermal efficiency for industrial engines, gas path pressures, temperatures, etc. To select the most appropriate to-be-adapted component parameters, a sensitivity bar chart is used to analyze the sensitivity of all potential component parameters against the engine performance parameters. The two adaptation approaches have been applied to a model gas turbine engine. The application shows that the sensitivity bar chart is very useful in the selection of the to-be-adapted component parameters, and both adaptation approaches are able to produce good quality engine models at design point. The comparison of the two adaptation methods shows that the nonlinear matrix inverse method is faster and more accurate, while the genetic algorithm-based adaptation method is more robust but slower. Theoretically, both adaptation methods can be extended to other gas turbine engine performance modelling applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号