首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dispersions of oil in water are encountered in a variety of industrial processes leading to a reduction in the performance of the heat exchangers when thermally treating such two phase fluids. This reduction is mainly due to changes in the thermal and hydrodynamical behavior of the two phase fluid. In the present work, an experimental investigation was performed to study the effects of light oil fouling on the heat transfer coefficient in a double‐pipe heat exchanger under turbulent flow conditions. The effects of different operating conditions on the fouling rate were investigated including: hot fluid Reynolds number (the dispersion), cold fluid Reynolds number, and time. The oil fouling rate was analyzed by determining the growth of fouling resistance with time and through pressure drop measurements. The influence of copper oxide (CuO) nanofluid on the fouling rate in the dispersion was also determined. It was found that the presence of dispersed oil causes a reduction in heat transfer coefficient by percentages depending on the Reynolds number of both cold and hot fluids and the concentration of oil. In addition, the time history of fouling resistance exhibited different trends with the flow rates of both fluids and its trend was influenced appreciably by the presence of CuO nanofluid.  相似文献   

2.
This paper examines experimentally the effect of jet vortex technology on enhancing the heat transfer rate within a double pipe heat exchanger by supplying the heat exchanger with water at different vortex strengths. A vortex generator with special inclined holes with different inlet angles was designed, manufactured, and integrated within the heat exchanger. In this study, four levels of Reynolds number for hot water in the annulus (Reh) were used, namely, 10,000; 14,500; 18,030; and 19,600. Similarly, four levels of Reynolds number for cold water in the inner tube (Rec) were used, namely, 12,000; 17,500; 22,500; and 29,000. As for the inlet flow angle (θ), four different levels were selected, namely, 0°, 30°, 45°, and 60°. The temperature along the heat exchanger was measured utilizing 34 thermocouples installed along the heat exchanger. It was found that increasing the inlet flow angle (θ) and/or the Reynolds number results in an increase in the local Nusselt number, the overall heat transfer coefficient, and the ratio of friction factor. It is revealed that the percentage increase in the average Nusselt number due to swirl flow compared to axial flow was 10%, 40%, and 82% for an inlet flow angle of 30°, 45°, and 60°, respectively.  相似文献   

3.
Hong E  A. Paul Watkinson 《传热工程》2013,34(10-11):786-793
Heavy oil fractions rich in asphaltenes were mixed with diluents containing from 0.6 to 25% aromatics, and the resulting blends subjected to batch precipitation experiments at 85°C, and thermal fouling tests at surface temperatures in the range 230–310°C. Deposit compositions were determined, and are compared with suspended asphaltene composition. When the heavy oils were blended with the most aromatic diluents, precipitation and fouling were negligible. As the aromaticity of the diluents was decreased, the extent of asphaltene precipitation and the fouling rates increased. The solubility parameter of the blends, δ mix , and the flocculation solubility parameter for asphaltenes, δ f , were determined from measurements of the asphaltene flocculation onset by titration with heptane at temperatures from 25 to 50°C. Literature models predict no asphaltene precipitation (and presumably little fouling) will occur when [δ mix – δ f ] > 0. Both the amount of asphaltene precipitated in the batch experiments and the rate of thermal fouling decreased as the solubility parameter difference [δ mix – δ f ] increased from negative to positive values. However, some precipitation and fouling were observed at the expected condition for mixture stability δ mix ≥ δ f . As the temperature of the flocculation titration was raised toward the bulk temperatures of the experiments, values of [δ mix – δ f ] decreased, and the agreement of the data with prediction of the point for zero precipitation and fouling improved. For unstable oil blends, the solubility parameter provides a good predictive measure of the tendency for asphaltene precipitation and for heat exchanger fouling.  相似文献   

4.
To minimize the negative effects of scale formation in heat exchangers, new anti-fouling strategies are focusing on the modification of heat transfer surfaces. These modifications should lead to tailor-made surfaces for different technical applications. The aim of this surface modification is the extension of the induction period to minimize the negative effects of fouling and maximize the endurance of the heat exchanger. To achieve this, different surface coatings on stainless steel were investigated with respect to fouling tendency. The effects of flow velocity with respect to Reynolds number on the induction time of CaSO4 crystallization fouling were tested in different test units. Diamond-like carbon (DLC) coatings extend the induction time at every measured flow velocity. At higher Reynolds numbers, the effect of different surface crystallization due to energetic modification is reduced because of the dominating effect of the low adhesive surface. Thus the induction time can be extended by the factor of 2 for low fluid velocities (DLC or SICON®) and by more than 14 for higher Reynolds numbers (DLC and SICON®). The combination of limited nucleation spots due to electro-chemical treatment of the substrate before coating can give a tailor-made surface with maximum induction time for crystallization fouling.  相似文献   

5.
Simulation of Swirling Turbulent Heat Transfer in a Vortex Heat Exchanger   总被引:1,自引:0,他引:1  
ABSTRACT

This article presents a numerical simulation of swirling turbulent flow and heat transfer in a novel vortex heat exchanger. A new algebraic Reynolds stress/heat flux model (ASM/AFM) is applied to the simulation. The computation is performed under different air flow rates for both swirling and nonswirling flows. The calculated mean heat transfer coefficients on both inner and outer walls of the annular duct are compared with the measured data. They are generally improved over the results predicted by the new ASM/k? model. The effects of swirl on enhancing heat transfer in the annular duct are illustrated. The heat transfer performance of the vortex heat exchanger under different air flow rates is obtained.  相似文献   

6.
《Applied Thermal Engineering》2007,27(2-3):347-357
In oil refining, heat exchanger networks are employed to recover heat and therefore save energy of the plant. However, many heat exchangers in crude oil pre-heat trains are under high risk of fouling. Under fouling conditions, the thermal performance of heat exchangers is continuously reduced and its supervision becomes an important task. The large number of heat exchangers in pre-heat trains and the change of operation conditions and feedstock charges make the daily supervision a difficult task. This work applies an approach to follow the performance of heat exchangers [M.A.S. Jerónimo, L.F. Melo, A.S. Braga, P.J.B.F. Ferreira, C. Martins, Monitoring the thermal efficiency of fouled heat exchangers – A simplified method, Experimental Thermal and Fluid Science 14 (1997) 455–463] and extends it to monitor the whole train. The approach is based on the comparison of measured and predicted heat exchanger effectiveness. The measured value is computed from the four inlet and outlet temperatures of a heat exchanger unit. The predicted clean and dirty values of effectiveness are calculated from classical literature relations as a function of NTU and of heat capacity ratio (R). NTU and R are continuously adjusted according to mass flow rate changes. An index of fouling is defined for the whole network and the results show the performance degradation of the network with time. The work also suggests that Jerónimo’s index of fouling can be used to estimate the fouling thermal resistance of heat exchangers.  相似文献   

7.
Heat exchanger fouling model and preventive maintenance scheduling tool   总被引:1,自引:0,他引:1  
The crude preheat train (CPT) in a petroleum refinery consists of a set of large heat exchangers which recovers the waste heat from product streams to preheat the crude oil. In these exchangers the overall heat transfer coefficient reduces significantly during operation due to fouling. The rate of fouling is highly dependent on the properties of the crude blends being processed as well as the operating temperature and flow conditions. The objective of this paper is to develop a predictive model using statistical methods which can a priori predict the rate of the fouling and the decrease in heat transfer efficiency in a heat exchanger. A neural network based fouling model has been developed using historical plant operating data. Root mean square error (RMSE) of the predictions in tube- and shell-side outlet temperatures of 1.83% and 0.93%, respectively, with a correlation coefficient, R2, of 0.98 and correct directional change (CDC) values of more than 92% show that the model is adequately accurate. A case study illustrates the methodology by which the predictive model can be used to develop a preventive maintenance scheduling tool.  相似文献   

8.
A 3-D numerical simulation is performed on laminar heat transfer and flow characteristics of a slit fin-and-tube heat exchanger with longitudinal vortex generators. Heat transfer enhancement of the novel slit fin mechanism is investigated by examining the effect of the strips and the longitudinal vortices. The structure of the slit fin is optimized and analyzed with field synergy principle. The result coincides with the guideline ‘front coarse and rear dense’. The heat transfer and fluid flow characteristics of the slit fin-and-tube heat exchanger with longitudinal vortex generators are compared with that of the heat exchanger with X-shape arrangement slit fin and heat exchanger with rectangular winglet longitudinal vortex generators. It is found that the Colburn j-factor and friction factor f of the novel heat exchanger with the novel slit fin is in between them under the same Reynolds number, and the factor j/(f1/3) of the novel heat exchanger increased by 15.8% and 4.2%, respectively.  相似文献   

9.
A steady-state three-dimensional numerical model was used to study the heat transfer and pressure drop characteristics of an offset strip fin heat exchanger. Water was the heat transfer medium, and the Reynolds number Redh ranged from 10 to 3500. Variations in the Fanning friction factor f and the Colburn heat transfer factor j relative to Redh were observed. General correlations for the f and j factors were derived, and these could be used to analyze fluid flow and heat transfer characteristics of offset strip fins in the laminar, transition, and turbulent regions. Finally, three performance criteria (j/f, j/f1/3, and JF) were adopted, and the best performance criteria for the cases Pr = 7 and Pr = 50 were chosen to be JF and j/f1/3, respectively.  相似文献   

10.
The present study explored the effects of perforated double counter twisted tapes on heat transfer and fluid friction characteristics in a heat exchanger tube. The twisted tapes with four different porosities of Rp = 1.2, 4.6, 10.4 and 18.6% were used as counter-swirl flow generators in the test section. The experiments were conducted in a circular tube in turbulent flow regime with Reynolds number ranging from 7200 to 50,000 using air as the working fluid under uniform wall heat flux boundary condition. The experimental results demonstrated that the Nusselt number, friction factor and thermal enhancement efficiency were increased with decreasing porosity except porosity of 1.2%. The results also revealed that the heat transfer rate of the tube fitted with tapes were significantly increased with corresponding increase in friction factor. In the range of the present investigation, heat transfer rate and friction factor were obtained to be around 80 to 290% and 111 to 335% higher than those of the plain tube values, respectively. Based on constant blower power, the highest thermal enhancement efficiency of 1.44 was achieved. In addition, the empirical correlations of Nusselt number, friction factor and thermal enhancement efficiency were developed based on the experimental data.  相似文献   

11.
In this paper the convective heat transfer and friction factor of the nanofluids in a circular tube with constant wall temperature under turbulent flow conditions were investigated experimentally. Al2O3 nanoparticles with diameters of 40 nm dispersed in distilled water with volume concentrations of 0.1–2 vol.% were used as the test fluid. All physical properties of the Al2O3–water nanofluids needed to calculate the pressure drop and the convective heat transfer coefficient were measured. The results show that the heat transfer coefficient of nanofluid is higher than that of the base fluid and increased with increasing the particle concentrations. Moreover, the Reynolds number has a little effect on heat transfer enhancement. The experimental data were compared with traditional convective heat transfer and viscous pressure drop correlations for fully developed turbulent flow. It was found that if the measured thermal conductivities and viscosities of the nanofluids were used in calculating the Reynolds, Prandtl, and Nusselt numbers, the existing correlations perfectly predict the convective heat transfer and viscous pressure drop in tubes.  相似文献   

12.
A detailed numerical study has been conducted in order to analyse the combined buoyancy effects of thermal and mass diffusion on the turbulent mixed convection tube flows. Numerical results for air-water system are presented under different conditions. A low Reynolds number k-ε turbulent model is used with combined heat and mass transfer analysis in a vertical heated tube. The local heat fluxes, Nusselt and Sherwood numbers are reported to obtain an understanding of the physical phenomena. Predicted results show that a better heat transfer results for a higher gas flow Reynolds number Re, a higher heat flux qw or a lower inlet water flow Γ0. Additionally, the results indicate that the convection of heat by the flowing water film becomes the main mechanism for heat removal from the wall.  相似文献   

13.
Direct and Large-Eddy simulations are conducted in a fin bank with dimples and protrusions over a Reynolds number range of ReH = 200 to 15,000, encompassing laminar, transitional and fully turbulent regimes. Two dimple-protrusion geometries are studied in which the same imprint pattern is investigated for two different channel heights or fin pitches, Case 1 with twice the fin pitch of Case 2. The smaller fin pitch configuration (Case 2) develops flow instabilities at ReH = 450, whereas Case 1 undergoes transition at ReH = 900. Case 2, exhibits higher Nusselt numbers and friction coefficients in the low Reynolds number regime before Case 1 transitions to turbulence, after which, the differences between the two decreases considerably in the fully turbulent regime. Vorticity generated within the dimple cavity and at the dimple rim contribute substantially to heat transfer augmentation on the dimple side, whereas flow impingement and acceleration between protrusions contribute substantially on the protrusion side. While friction drag dominates losses in Case 1 at low Reynolds numbers, both form and friction drag contributed equally in Case 2. As the Reynolds number increases to fully turbulent flow, form drag dominates in both cases, contributing about 80% to the total losses. While both geometries are viable and competitive with other augmentation surfaces in the turbulent regime, Case 2 with larger feature sizes with respect to the fin pitch is more appropriate in the low Reynolds number regime ReH < 2000, which makes up most of the operating range of typical compact heat exchangers.  相似文献   

14.
The convective heat transfer, friction factor and effectiveness of different volume concentrations of Fe3O4 nanofluid flow in an inner tube of double pipe heat exchanger with return bend has been estimated experimentally and turbulent flow conditions. The test section used in this study is of double pipe type in which the inner tube diameter is 0.019 m, the annulus tube diameter is 0.05 m and the total length of inner tube is 5 m. At a distance of 2.2 m from the inlet of the inner tube the return bend is provided. The hot Fe3O4 nanofluid flows through an inner tube, where as the cold water flows through an annulus tube. The volume concentrations of the nanoparticles used in this study are 0.005%, 0.01%, 0.03% and 0.06% with Reynolds number range from 15,000 to 30,000. Based on the results, the Nusselt number enhancement is 14.7% for 0.06% volume concentration of nanofluid flow in an inner tube of heat exchanger at a Reynolds number of 30,000 when compared to base fluid data; the pumping penalty of nanofluid is < 10%. The effectiveness of heat exchanger for water and nanofluid flow is explained in terms of number of transfer units (NTU) in order to estimate the overall performance of the double pipe heat exchanger. New correlations for Nusselt number and friction factor have been developed based on the experimental data.  相似文献   

15.
The influences of the performance parameters and the heat transfer characteristics of the absorption heat pump using ammonia–water mixture are theoretically carried out. There is a pronounced effect of the ammonia concentration ξ after rectifier on the temperature glides that has been investigated. At ξ = 0.9000 and saturation pressures of 75 and 0.5 bar, the temperature glides are 64.4°C and 81.21°C, respectively, whereas these glides are 0°C and 16.1°C at ξ = 0.9999 and at the same pressures. This mixture property considerably affects the absorption system performance and the design of the rectifier as well as other absorption components. A correlation of the Nusselt number, Nu, is developed and compared with some published work in the literature for plate type heat exchanger. The effects of ammonia concentration ξ, mass fraction spread Δξ, specific solution circulation ratio f, and pressure ratio Rp on the refrigerant mass flow rate, the pressure drop, and the heat transfer coefficients during the condensation, the evaporation, and the absorption processes are investigated. It was found that increasing ammonia mass fraction spread Δξ results in both specific circulation ratio f and Rp that have insignificant effects on the refrigerant mass flow rate. Mounting Δξ at constant f reduces the pressure drop gradually and subsequently starts to increase as Δξ escalates. The ammonia concentration ξ has insignificant effect on the evaporation heat transfer coefficient but has a little effect on the condensation and the absorber heat transfer coefficients. The ammonia mass fraction spread Δξ and f have considerable effects on the heat transfer coefficient for different absorption heat pump components. Rp has a pronounced effect on the evaporation heat transfer coefficient, although it has a slight effect on the condensation and the absorber heat transfer coefficients. The effect of Rp on the heat transfer coefficient may be eliminated in the absorber for Δξ > 0.18. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
This experiment was carried out using delta winglet arrays of vortex generators (VG) with inline arrangement in a tube heat exchanger to study enhanced heat transfer and flow behaviour. The experiment was conducted for the turbulent flow (Re = 6000 to 27000). In this experiment, different parameters, pitch ratios (PR = 1.6, 2.4, and 4.8), lengths (L = 10, 15, and 20 mm), and attack angles (B = 0°, 10°, 20°, 30°, and 45°) were studied and then their effect on thermal performance was observed. Results indicate that the PR affected f and Nu significantly. For PR = 1.6, VGs showed the highest f and Nu for all of the cases. Vortex generators with L10 B45 PR4.8 achieved the best TPE with 1.23 at Re = 6000. Attack angle B indicated a significant impact on thermal performance and 45 degree showed the TPE of 1.23 at lower Re. Oil film flow and smoke flow visualization were employed to identify the flow vortices and understand flow mechanism. The oil film flow and smoke flow visualization clearly traced longitudinal vortex, and induced vortex, which induced impingement flow and recirculation zone that lead to significant heat transfer enhancement.  相似文献   

17.
Nanofluid is a new class of heat transfer fluids engineered by dispersing metallic or non-metallic nanoparticles with a typical size of less than 100 nm in the conventional heat transfer fluids. Their use remarkably augments the heat transfer potential of the base liquids. This article presents the heat transfer coefficient and friction factor of the TiO2-water nanofluids flowing in a horizontal double tube counter-flow heat exchanger under turbulent flow conditions, experimentally. TiO2 nanoparticles with diameters of 21 nm dispersed in water with volume concentrations of 0.2–2 vol.% are used as the test fluid. The results show that the heat transfer coefficient of nanofluid is higher than that of the base liquid and increased with increasing the Reynolds number and particle concentrations. The heat transfer coefficient of nanofluids was approximately 26% greater than that of pure vol.%, and the results also show that the heat transfer coefficient of the nanofluids at a volume concentration of 2.0 vol.% was approximately 14% lower than that of base fluids for given conditions. For the pressure drop, the results show that the pressure drop of nanofluids was slightly higher than the base fluid and increases with increasing the volume concentrations. Finally, the new correlations were proposed for predicting the Nusselt number and friction factor of the nanofluids, especially.  相似文献   

18.
19.
Abstract

Crude oil fouling of a shell-and-tube heat exchanger sized according to TEMA standard is compared to a No-Foul design under industrial operating conditions. For similar operating conditions, TEMA and No-Foul heat exchangers have the same behavior regarding fouling. Since the No-Foul one has less tubes by design for the same heat duty, shear stress is increased. Consequently, the No-Foul heat exchanger is less prone to fouling at the same throughput. Impact of tube bundle geometry is then investigated. Helically finned tubes are compared to plain tubes in the No-Foul heat exchanger. Under similar operating conditions, fouling rates measured are up to an order of magnitude lower than plain tubes (respectively 10?11 and 10?10 m2 K/J). However, pressure drop across the tube-side in both No-Foul plain and finned setup are increased in comparison to the TEMA heat-exchanger.  相似文献   

20.
A numerical model has been developed for turbulent flow of hybrid nanofluids in a tube with wire coil inserts. The model was developed from van Driest eddy diffusivity equation. The model can be implemented with the consideration of new variables in eddy diffusivity of momentum and heat by using the coefficient, K and Prandtl index, ζ, respectively. The numerical analysis are undertaken for wide range of Reynolds number, different volume concentration, ? and various pitch ratio, P/D of wire coil. The numerical results were validated with the experimental data of TiO2–SiO2 nanofluids undertaken for wide range of Reynolds number and volume concentration. The final regression models of coefficient K and Prandtl index ζ were developed as a function of Reynolds number, Re or dimensionless radius, R+, volume concentration, ? and pitch ratio, P/D. A good agreement between the experimental data and numerical model indicating the validity of the numerical model for hybrid nanofluids with wire coil inserts. The numerical analysis was proved that the hybrid nanofluids contributes to higher Nusselt number and thus have better heat transfer performance compared to single nanofluids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号