首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present article investigates the effect of varying porous slab thicknesses (S = 0–0.4) and Darcy number (Da = 10−6–10−2) on the thermohydraulic performance of three different corrugated channels (triangular, sinusoidal, and trapezoidal) embedded with partially filled porous media. Ag–TiO2/water hybrid nanofluid (ϕ $\phi $ = 0–0.04) is taken as coolant flowing at Re = 400. Results revealed that the thermal performance (average Nusselt number, Nuavg and enhancement ratio, ER) augments with the increase in porous slab thickness and decrease in Darcy number. However, the hydraulic performance reduces (i.e., an increase in pressure drop). To check the viability of the cooling system performance factor (PF) is evaluated which demonstrates variation in thermal performance considering pressure drop penalty also. It is demonstrated that among all configurations, the trapezoidal channel with porous slab thickness (S = 0.4) and Darcy number (Da = 104) gives maximum enhancement thermal performance (110%) considering water as a coolant (ϕ $\phi $ = 0). Furthermore, enhancement in thermal performance by 210% is noticed as volume concentration ϕ $\phi $ of hybrid nanofluid varies from 0% to 4%. It is also evident that the value of PF for all corrugated channels is lower than 1 indicating the nonviable system. However, for the case of the partially porous plane channel the maximum PF = 1.07.  相似文献   

2.
The heat transfer enhancement performance of a phase change buried tubes thermal storage system is influenced by major parameters such as arrangement of heat transfer tubes, fin structure and fin geometry size. We developed a three-dimensional numerical model with two different arrangements and five different enhanced heat transfer structures respectively. For the sake of analysis the effects of arrangement of heat transfer tubes, fin structure and fin geometry size. In addition, we applied the enthalpy-transforming model to obtain the liquid fraction and location of the solid-liquid interface at different time in the phase change process. The numerical results show that the melting time of the thermal storage system model with a triangle arrangement is about 6.1% longer than that of the model with a square arrangement. Besides, the melting time of the model with 55 mm tube pitch is about 16.7% shorter than that of tube pitch with 60 mm. Moreover, the buried tube thermal storage system models with circle fins have the shortest melting time, which is 18 seconds. Melting time of the model with circle fins is about 40% shorter than that of the model with smooth tube. In addition, the melting time of the model with 3 mm fin thickness is 10 seconds, which is the shortest. The model with thicker fins means the shorter time of melting process. Moreover, the melting time of the model with 10.5 mm fin spacing is about 23.5% shorter than that of the model with 12.5 mm fin spacing, which is 13 seconds. In conclusion, the main factor of the melting time is the heat transfer area. It provides a guidance for the design and reconstruction of the type of heat storage structure.  相似文献   

3.
针对一台立式燃油热水锅炉的结构特点,设计了在炉膛安装燃烧反应器对锅炉进行节能改造的方案,通过流体计算软件Fluent 对锅炉改造前后的燃烧换热状况进行了数值计算,并进行了锅炉改造前后热平衡对比试验,数值计算和试验结果基本一致.改造后提高了炉膛辐射换热量,增加了热烟气在炉内的停留时间,改变了原来锅炉炉膛受热不均的状况,换...  相似文献   

4.
Fluid flow and heat transfer characteristics of differentially heated lid driven cavities are numerically modeled and analyzed in the present study. One‐, two‐, and four‐sided lid driven cavity configurations are considered with the vertical walls being maintained at different temperatures and the horizontal walls being thermally insulated. Eight different cavity configurations are considered depending on the direction of wall motion. The Prandtl number Pr is taken to be 0.7, the Grashof number is taken to be 104, while two values for the Richardson number Ri are considered, 0.1 and 10. It is found that both the Richardson number and the cavity configuration affect the heat and fluid flow characteristics in the cavity. It is concluded that for Ri=0.1, a four‐sided driven cavity configuration with all walls rotating in the same direction would triple the value of the average Nusselt number at the cold wall when compared to a one‐sided driven cavity configuration. However, for Ri=10, the cavity configuration has minimal effect and all eight cases result in an average Nusselt number value at the cold wall ranging between 1.3 and 1.9. © 2009 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience ( www.interscience. wiley.com ). DOI 10.1002/htj.20264  相似文献   

5.
ExperimentalStudyonHeatTransferandPressureDropCharacteristicsofFourTypesofPlateFin-and-TUbeHeatExchangerSurfaces¥H.J.Kang;W.L...  相似文献   

6.
In this study, the heat transfer performance and friction characteristics of a novel concentric tube heat exchanger with different pitches of helical turbulators were investigated experimentally and numerically for a Reynolds number range from 3000 to 14 000. An experimental system was established to obtain experimental data. The numerical simulations were performed by using a three dimensional numerical computation technique, a commercial CFD computer code. Then, the heat transfer performance and friction characteristics of several helical turbulators were compared. The experimental, numerical and empirical correlation results were in a good agreement with each others. As a result, the heat transfer enhancements using turbulators were 2.91, 2.41, 2.18 and 1.99 times better than the smooth tube for pitch distances of p = 20, 40, 60 and 80 mm, respectively. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Heat transfer augmentation study using air jet impingement has recently attained great interest toward electronic packaging systems and material processing industries. The present study aims at developing a nondimensional semiempirical relation, which represents the cooling rate (Nu) in terms of different geometric and impinging parameters. The spacing of the fin (S/dp) and the fin heights (H/dp) are the geometric parameters, while the impinging Reynolds number (Re) and nozzle‐target spacing (Z/d) are the impinging parameters. During the plot of the Nusselt profile, three vital secondary peaks are observed due to local turbulence of air over the heat sink. To incorporate this nonlinear behavior of the Nusselt profile in developing nondimensional empirical relations, the Nusselt profiles are divided into different regions of secondary rise and fall. Four different sets of the semiempirical relation using regression analysis are proposed for Z/d ≤ 6, H/dp ≤ 4.8 with S/dp ≤ 1.58, S/dp > 1.58 and for Z/d > 6, H/dp > 4.8 with S/dp ≤ 1.58, S/dp > 1.58. These empirical relations benefit the evaluation of the cooling rate (Nu) without any experimentation or simulation.  相似文献   

8.
根据纵向涡强化传热技术提出了新型的强化换热管——锥形内肋管,运用数值模拟方法,研究了新型强化换热管结构参数锥底宽度a、导程P、肋深e和Re数对Nu、沿程阻力系数f及传热综合因子η的影响。结果表明:换热管内壁面边缘处产生了较多的微小涡流,有效破坏了流动边界层,强化了传热。在充分湍流的条件下,流体Re越小、e越小,其综合传热性能越强。当Re<15 000时,a对η的影响要大于P;在过渡点后, P对η影响较大。通过综合传热性能分析,给出了适合不同Re区间的锥形内肋优化参数。  相似文献   

9.
张后雷  宣益民 《动力工程》2002,22(3):1824-1826,1797
采用红外热像技术在稳态条件下分别测量了波纹和波纹打孔板翅表面的对流换热系数,得到了换热无量纲准则式。对两种板翅表面的传热与阻力特性进行了比较分析,结果表明在Re=1000-3000的大部分范围内,波纹打孔型表面比波纹型表面的换热系数高5%-25%,在Re<2000的范围内,波纹打孔流道的阻力略小于波纹流道或基本相当。图6参3  相似文献   

10.
The problem of fully developed laminar mixed convection flow in a vertical wavy channel filled with two immiscible viscous fluids is studied analytically. Non‐linear equations governing the motion have been solved by linearization technique, wherein the flow is assumed to be in two parts; a mean part and a perturbed part. Exact solutions are obtained for the mean part and a perturbed part is solved using long wave approximation. Separate solutions are matched at the interface using suitable matching conditions. Numerical results are presented graphically for the distribution of velocity and temperature fields for varying physical parameters such as Grashof number, viscosity ratio, width ratio, and conductivity ratio. The effect of these parameters on the physical characteristics such as Nusselt number and skin friction at the walls is studied. It is found that Grashof number, viscosity ratio, width ratio, and conductivity ratio enhance the velocity parallel to the flow direction. Reversal effect is observed on the velocity which is perpendicular to the flow direction. The Nusselt number remains invariant on Grashof number. As the width ratio decreases, the Nusselt number decreases at the right wall and increases at the left wall and reversal effect is observed for variations of conductivity ratio. The skin friction increases at the left wavy wall and decreases at the right wavy wall as the Grashof number increases. © 2011 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.20379  相似文献   

11.
肖洪 《节能技术》2006,24(3):265-267
本文对椭圆管与扁管管板式换热器的充分发展的周期性层流流动与换热特性进行了数值计算分析,给出了在400相似文献   

12.
对空气横掠片距不相等的叉排椭圆翅片管散热器的传热及阻力性能进行了试验研究,得到试件在一系列工况下的传热与管外流动阻力数据,并对试验数据进行分析计算,从总传热系数K中分离出管外空气侧的对流换热系数h,给出有工程应用价值的管外换热准则关系式及管外阻力准则关系式。认为椭圆管管外的平均换热效果优于圆管。在相同的流通截面积下椭圆管传热周边较长,换热面积相应增加,因此结构上允许布置得更紧凑。  相似文献   

13.
Numerical simulations were conducted for natural convection heat transfer in a narrow gap between two horizontal plates in air. The lower plate is an infinite plate with a circular heating zone. The upper one is the bottom of a vertical cylinder, which is placed right above the circular heated plate and kept at room temperature. A set of Navier–Stokes equations and an energy equation are analyzed for a variety of combinations of gap clearance and Rayleigh number. The calculated average heat transfer values are shown to be in good agreement with the experimentally obtained ones reported in a previous paper. From the obtained isotherms, streamlines, and local Nusselt numbers, it is found that two types of convection appear in the gap space according to the conditions of Rayleigh number and gap clearance: one is a simple convection due to a single renewal flow which replaces heated air with ambient air and the other is a combined convection due to several vortex flows and a renewal flow. Furthermore, the flow rate of each flow controls the rate of heat transfer from the limited area which is covered by each flow. From this fact, the validity of the previously proposed heat transfer correlation is briefly discussed. © 2001 Scripta Technica, Heat Trans Asian Res, 30(6): 485–502, 2001  相似文献   

14.
设计了一套定量测试不同工况下壳管式相变蓄热器传热效率装置。采用壳管式相变储热,石蜡填充入壳管间,管内通入冷、热载流体,模拟吸热放热过程。测试发现:相同入口条件下,单位时间传热量随入口水温增加呈线性增加;管内载流体流量加大有助于提高传热水平,15~60 L/h流量内单位时间传热量增速随流量增加放缓;不同材质传热管单位时间传热量变化并不明显,表明管道热阻在相变蓄热器总热阻中所占份额较小;相同工况下的蓄热过程,热载流体由下向上流动传热形式明显优于由上向下管排形式;尝试在封装相变材料中添加金属网状结构,强化相变材料内部热传导速率,对比发现相同工况下相变材料中添加金属网状结构,可提高10%~15%左右传热量。  相似文献   

15.
A device was developed to enhance heat transfer from heated horizontal plates. The device consists of six straight gutters with slits at the center for the introduction of air. Heat transfer coefficients were measured for several device heights above the heated surface. A height of about 10 mm was found to give rise to the highest heat transfer coefficients. In this case heat transfer rates were 1.2 to 1.4 times larger than those for smooth plates. © 1997 Scripta Technica, Inc. Heat Trans Jpn Res, 26 (1): 30–38, 1997  相似文献   

16.
Two‐dimensional conjugate conduction/convection numerical simulations were carried out for flow and thermal fields in a unit model of a counter‐flow‐type corrugated thin plate heat exchanger core. The effects of the thermal resistance of the solid plate, namely the variation of the plate thickness and the difference of the plate material, on the heat exchanger performance were examined in the Reynolds number range of 100<Re<400. Higher temperature effectiveness was obtained for a thicker plate at any Reynolds number, which was a unique feature of corrugated thin plate geometry. Detailed discussions on the thermal fields revealed that restricting the heat conduction along the plate by making the plate thinner or choosing a low thermal conductivity material causes a larger plate temperature variation along the plate, and, consequently, a smaller amount of thermal energy exchanged between two fluids. © 2006 Wiley Periodicals, Inc. Heat Trans Asian Res, 35(3): 209–223, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20110  相似文献   

17.
管勇  胡万玲 《节能》2006,25(7):23-25,31
通过数值模拟的方法,研究了小翼式涡产生器对错排圆管管片式换热芯子换热与阻力特性的影响,比较了光板与加涡产生器强化板芯的速度场、横向平均Nu数以及平均对流换热系数、阻力系数的变化规律,为进一步提高其换热性能、改进翅片结构、设计新型换热器提供了理论依据。  相似文献   

18.
Because of the unstable and intermittent nature of solar energy availability, a thermal energy storage system is required to integrate with the collectors to store thermal energy and retrieve it whenever it is required. Thermal energy storage not only eliminates the discrepancy between energy supply and demand but also increases the performance and reliability of energy systems and plays a crucial role in energy conservation. Under this paper, different thermal energy storage methods, heat transfer enhancement techniques, storage materials, heat transfer fluids, and geometrical configurations are discussed. A comparative assessment of various thermal energy storage methods is also presented. Sensible heat storage involves storing thermal energy within the storage medium by increasing temperature without undergoing any phase transformation, whereas latent heat storage involves storing thermal energy within the material during the transition phase. Combined thermal energy storage is the novel approach to store thermal energy by combining both sensible and latent storage. Based on the literature review, it was found that most of the researchers carried out their work on sensible and latent storage systems with the different storage media and heat transfer fluids. Limited work on a combined sensible-latent heat thermal energy storage system with different storage materials and heat transfer fluids was carried out so far. Further, combined sensible and latent heat storage systems are reported to have a promising approach, as it reduces the cost and increases the energy storage with a stabilized outflow of temperature from the system. The studies discussed and presented in this paper may be helpful to carry out further research in this area.  相似文献   

19.
Heat transfer in falling liquid film systems is enhanced by waviness. Comprehension of the underlying kinetic phenomena requires experimental data of the temperature field with high spatiotemporal resolution. Therefore a non-invasive measuring method based on luminescence indicators is developed. It is used to determine the temperature distribution and the local film thickness simultaneously. First results are presented for the temperature distribution measurement in a laminar-wavy water film with a liquid side Reynolds number of 126 flowing down a heated plane with an inclination angle of 2°. The measured temperature distributions are used to calculate the local heat transfer coefficient and the convective heat flux perpendicular to the wall for different points in the development of a solitary wave.  相似文献   

20.
Experiments have been carried out for mixed convective flows of air adjacent to the vertical heated plates in uniform horizontal forced flows to investigate relationships between the flow and the heat transfer. The experiments cover the ranges of the Reynolds and modified Rayleigh numbers: ReL = 160 to 2300 and RaL* = 4.3 × 105 to 2.0 × 108. The flow fields over the plates are visualized with particles and smoke. The results show that a stagnation point moves downward away from the center of the plate when the surface heat flux is beyond a critical value. The condition where the stagnation point begins to move is expressed with non‐dimensional parameters as: GrL*/ReL2.5 = 0.15. Profiles of measured local heat transfer coefficients are smooth even at the stagnation points in all the cases examined. When buoyancy effect is sufficiently weak, the coefficients agree well with those of the wedge flow. With increasing the surface heat flux, the coefficients are augmented to approach asymptotically the boundary layer solution of natural convection along a vertical heated plate. Finally, forced, mixed, and natural convection regimes are classified by the non‐dimensional parameter (GrL*/ReL2.5). © 2009 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20256  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号