首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In this article, a new broadband circularly polarized (CP) microstrip patch antenna (MPA) with a sequential phase (SP) square‐loop feeding structure is proposed. The presented antenna is composed of a square‐loop feeding structure, four L‐shaped parasitic patches with L‐shaped slots, four parasitic square patches, and a corner‐truncated square patch. At first, a SP square‐loop is designed as a feeding structure. Then, four L‐shaped parasitic patches with L‐shaped slots are utilized to generate one CP mode by a capacitive coupled way. At last, four parasitic square patches and a corner‐truncated square patch are together placed above the SP feeding structure to broaden the circularly polarized bandwidth (CPBW). The presented antenna has a wide 3‐dB axial ratio bandwidth (ARBW) of 16.7% (5.4 GHz, 4.95‐5.85 GHz), and a wide 10‐dB return loss bandwidth of 25.5% (5.5 GHz, 4.8‐6.2 GHz). The proposed antenna features compact structure and broad 3‐AR bandwidth which could completely cover the WLAN (5.725‐5.85GHz) band. Therefore, the proposed antenna is suitable for circular polarization applications in C band.  相似文献   

2.
A new broadband circularly polarized (CP) square‐slot antenna with low axial ratios is proposed in this article. The antenna is comprised of an L‐shaped microstrip line with tapered section and a square‐slot ground plane with some stubs and slots, which are utilized as perturbations for the desirable antenna performance. By loading stubs and slots in the square‐slot ground plane, the 2‐dB axial ratio bandwidth (ARBW) and 10‐dB return loss bandwidth for the presented antenna can be markedly improved. The measured results show that its 2‐dB ARBW is 4.2 GHz (54.2% from 5.65 GHz to 9.85 GHz) and its 10‐dB return loss bandwidth is about 8.9 GHz (92.7% from 5.15 GHz to 14.05 GHz). The proposed antenna features compact structure and broad 2‐AR bandwidth which could completely cover the WLAN (5.725‐5.85 GHz) band. Therefore, the proposed antenna is suitable for circular polarization applications in C band.  相似文献   

3.
A novel wideband circularly polarized (CP) antenna array is designed, which consists of a horizontally placed wideband phase shifting feed network and four vertically placed linearly polarized dipole antenna elements, and the circular polarization is realized based on sequential rotation feeding technology. By placing two parasitic strips and two grounding strips on the top and side of each T‐shaped dipole antenna element, the impedance bandwidth and circular polarization performance of the antenna can be further improved. The simulation results show that the 10‐dB impedance bandwidth of the antenna is 93% (1.56‐4.27 GHz) and the 3‐dB AR bandwidth is 80.7% (1.7‐4.0 GHz). The measured results are in good agreement with the simulation results. Due to the use of orthogonally placed wideband feed network and wideband array elements, the proposed antenna array has a wider circular polarization bandwidth than the similar antenna arrays reported.  相似文献   

4.
A single‐fed circularly polarized square shaped wide slot antenna with modified ground plane and microstrip feed has been presented. The field in the slot is perturbed by introducing an antipodal strips section attached with a microstrip line to produce circular polarization in a wide band of frequencies. The antipodal strip section consists of a group of four strips of unequal length and separation. The presence of asymmetric perturbations in the slot is mainly responsible for exciting two orthogonal modes in the slot having equal magnitude and 90° phase difference which results in circular polarization. A wide bandwidth of 3.3 GHz (4.4 GHz‐7.7 GHz) has been achieved for an axial ratio value AR < 3 dB with the minimum axial ratio value being 0.3 dB. The impedance bandwidth for |S11| < ?10 dB ranges from 4.3 GHz to 8 GHz, and therefore covers most of the C‐band communication systems. The antenna exhibits stable radiation patterns throughout the circular polarization bandwidth with a gain around 6 dBi in entire operational bandwidth. A prototype of antenna was fabricated and measured. The antenna has a planar size 0.40λ0 × 0.40λ0 and thickness of 0.02λ0 where λ0 is the wavelength in free space at the lowest frequency. With its compact size and low profile, the antenna is a favorable choice for WLAN (5.15‐5.85 GHz) and a wide variety of C‐band wireless applications.  相似文献   

5.
A circularly polarized (CP) printed quadrifilar helix antenna (QHA) with enhanced bandwidth is proposed in this communication. This QHA is fed by a feeding structure with superior performance, which uses wide‐band 90° and 180° planar bulun. The feeding network can simply realize the 90° phase shift and four equal power divisions within a wide band range. Enhanced impedance matching and CP radiation characteristics can be achieved with the parasitic strips between helix arms. The study of proposed antenna performance with different geometric parameters has been conducted. The final antenna exhibits a good impedance bandwidth (IBW) of approximately 37.4% (1.65‐2.41 GHz), and the 3‐dB axial‐ratio bandwidth (ARBW) is over 43.9% (1.6‐2.5 GHz). Broad pattern coverage, pure CP radiation at all designed bands and a wide 3 dB axial‐ratio beam width of 150° makes this antenna an excellent candidate for satellite communications and navigation systems.  相似文献   

6.
In this article, a new compact metasurface circularly polarized (CP) antenna is presented, where the rotating 45° periodic ellipse patch is used to achieve polarization conversion from linearly polarized to CP. The meta‐surface is composed of 4 × 4 ellipse patches with 45° rotation, which are etched on the top layer of upper substrate. A slot ground plane and a coplanar waveguide structure are printed on both sides of bottom substrate, and the bottom substrate is directly connected to the upper substrate, which can make the antenna profile lower. As demonstrated in this article, the presented antennas have good characteristics of excellent 3‐dB axial ratio bandwidth of 17.4% (5.25‐6.25 GHz), and wide 10‐dB impedance bandwidth of 20.6% (5.0‐6.15 GHz).  相似文献   

7.
At present, the microwave frequency band bandwidth used for mobile communication is only 600 MHz. In 2020, the 5G mobile Communication required about 1 GHz of bandwidth, so people need to tap new spectrum resources to meet the development needs of mobile Internet traffic that will increase by 1,000 times in the next 10 years. Utilize the potentially large bandwidth (30∼300 GHz) of the millimeter wave frequency band to provide higher data rates is regarded as the potential development trend of the future wireless communication technology. A microstrip patch implementation approach based on electromagnetic coupling feeding is presented to increase the bandwidth of a dual-polarized millimeter-wave antenna. To extend the antenna unit's impedance bandwidth, coplanar parasitic patches and spatial parallel parasitic patches are used, and a 22 sub-array antenna is developed using paired inverse feed technology. The standing wave at the centre frequency of 37.5 GHz is less than 2 GHz. The antenna array's relative bandwidth is 6.13 percent, the isolation is >30 dB, the cross-polarization is −23.6 dB, and the gain is 11.5 dBi, according to the norm. The proposed dual-polarized microstrip antenna has the characteristics of wide frequency bandwidth, large port isolation, low cross-polarization, and high gain. The antenna performance meets the general engineering requirements of millimeter-wave dual-polarized antennas.  相似文献   

8.
This article presents two compact circularly polarized microstrip antennas with a very wide 3 dB axial ratio bandwidth and triple circularly polarized bands. A hexagonal stub (circular polarization element) along with tuning element in the ground plane is used for achieving wide 3 dB ARBW in antenna‐1, while a novel approach of using a parasitic strip around the circular polarization element is used in antenna‐2 for introducing band elimination notches in the circularly polarized band of antenna‐1. The antenna‐1 has a ?10 dB impedance bandwidth of 12.34% (3.8‐4.3 GHz), 84.02% (4.9‐12 GHz), and 3 dB ARBW of 79.94% (4.9‐10.9 GHz). The antenna‐2 displays circularly polarized band elimination notch characteristics with ?10 dB impedance bandwidth of 24.80% (3.85‐4.94 GHz), 31.72% (6.1‐8.4 GHz), 25.35% (9.3‐12 GHz), and 3 dB ARBW of 4.84% (4.63‐4.86 GHz), 19.08% (6.02‐7.29 GHz), and 5.7% (9.54‐10.1 GHz). Both the antennas are designed and fabricated on FR4 substrate of dimension (0.52 × 0.52 × 0.04)λ0 at a frequency of 7.9 GHz.  相似文献   

9.
A coplanar waveguide (CPW) fed printed compact monopole antenna with five band rejection features is presented. Wide bandwidth was achieved by beveling the lower part and adding a modified ellipse on the upper portion of the patch. An inverted circular arc, single circular split ring resonator (SRR) with wide opening and two symmetrical circular single SRRs were embedded for obtaining three stop‐band characteristics. Two symmetrical slits were inculcated in the ground forming defected ground structure (DGS) to get another stop‐band characteristic. Two concentric rectangular modified SRRs were etched to obtain a higher frequency stop‐band feature. The proposed antenna was designed, fabricated, and experimentally tested for the validation of results. The overall dimensions of the proposed antenna were 29 mm × 24 mm × 1.6 mm. The measured impedance bandwidth of the antenna was 2.87 to 13.3 GHz at | S11 |< ? 10 dB. The measured results show that the proposed antenna has five band notches centred at 3.96, 4.35, 5.7, 8.54, and 9.95 GHz to reject WiMAX band (3.65‐4.04 GHz), ARN band (4.29‐5.18 GHz), WLAN band (5.5‐6.9GHz), ITU‐8 band (7.37‐8.87), and amateur radio band (9.2‐10.3 GHz) respectively. The proposed antenna maintains omnidirectional radiation pattern in H‐Plane and dumbbell‐shape radiation pattern in E‐plane. Further, stable gain over the whole UWB except at notched frequency bands was reported.  相似文献   

10.
This article presents the design of an offset CPW‐fed slot antenna which exhibits a narrow impedance bandwidth (IBW; |S11| ≤ ?10 dB) extending from 1.20 GHz to 1.45 GHz and another wide impedance bandwidth from 1.86 GHz to 8.4 GHz thus covering almost all the conventional operating frequencies. The antenna is loaded with semicircular and rectangular stubs and meandered microstrip lines to realize circular polarization at 1.35 GHz, 3.3 GHz, 4.9 GHz, and 7.5 GHz with axial ratio bandwidth (axial ratio ≤ 3 dB) of 19.25% (1.2‐1.46 GHz), 4.24% (3.24‐3.38 GHz), 4.1%(4.8‐5 GHz), and 5.2% (7.3‐7.69 GHz) respectively thus covering the GPS, WiMAX, WLAN, and X‐band downlink satellite communication application bands. The mechanism of generation of CP is discussed using vector analysis of surface current density distribution. The gain is fairly constant in the wide IBW region with maximum fluctuation of 1.2 dB. The structure is compact with an overall layout area of 0.27λ × 0.27λ, where λ is the free‐space wavelength corresponding to the lowest circular polarized (CP) frequency. A comparison of the proposed antenna with previously reported structures is performed with respect to impedance bandwidth, compactness, number of CP bands, LHCP to RHCP isolation and gain to comprehend the novelty of the proposed design. A prototype of the proposed antenna is fabricated and the measured results are in accord with the simulated results.  相似文献   

11.
This paper presents a novel two layers beam‐steering array antenna fed by a 4 × 4 modified Butler matrix. Each of the radiation elements have been replaced by a collection of 2 × 2 circularly polarized (CP) square patches, which joined together by a modified sequentially rotated feed network. The antenna array consists of 2 × 5 CP square patches, which connected to four ring sequential rotation and fed by butler matrix. The proposed Butler matrix which plays a role as beam‐steering feed network consists of four novel 90° circular patch couplers and two 45° half circular patch phase shifter. Altogether, using of a 2 × 5 phased array antenna and a modified Butler matrix cause to empower array antenna for covering frequency range between 4.67 to 6.09GHz, the maximum gain of 14.98 dB and 3‐dB axial ratio bandwidth of 1.2GHz (4.9~6.1GHz) is attained.  相似文献   

12.
A compact four and eight elements multiple‐input‐multiple‐output (MIMO) antenna designed for WLAN applications is presented in this article. The antenna operates in IEEE 802.11b/g WLAN (2.4 GHz), IEEE 802.11 ac/n WLAN (5.2 and 5.8 GHz) and WiMAX (5.8 GHz) bands. The resonated mode of the antenna is achieved by two unequal Reverse‐L shaped, line‐shaped slots on top and parasitic element on the ground layer. The single antenna provides wide bandwidth of about 29% (2.3‐3.1 GHz) in lower and 22% (4.9‐6.1 GHz) in the upper band. The compactness of the single element antenna is found about 95% with respect to the patch and 61% in overall dimension. Thereafter an investigation is carried out to design two, four, and eight elements MIMO antennas. All of the multi‐element structures provide compact configuration and cover entire WLAN frequency ranges (2.4‐2.48 and 5.15‐5.85 GHz). The dimension of the proposed eight element MIMO antenna is 102 × 52 × 1.6 mm3. It covers the frequency (measured) from 2.4 to 3.1 GHz and 5 to 6.1 GHz. The diversity performance of the proposed MIMO antenna is also assessed in terms of the envelope correlation coefficient (ECC), diversity gain (DG), and total active reflection co‐efficient (TARC). The ECC is found <0.5 whereas the DG >9.0 is obtained for the desired bands.  相似文献   

13.
A Z‐shaped dipole antenna with parasitic strips is proposed for wideband and unidirectional circular polarization operation in this article. The dipole arms are bent into L‐shape for circular polarization, and printed balun is used to achieve good impedance matching. To further extend the axial ratio bandwidth, two parasitic strips are employed to introduce an additional band of circularly polarized operation at the high frequency. Measured results demonstrate that the proposed antenna has a 10‐dB impedance bandwidth of 63.3% (1.64‐3.16 GHz) and a 3‐dB axial ratio bandwidth of 51.1% (1.72‐2.9 GHz). Stable radiation patterns with gain around 9 dBic along +z‐axis are also observed.  相似文献   

14.
An investigation to enhance the decoupling between the elements of a compact wide band multiple‐input multiple‐output (MIMO) antenna is presented in this communication. A microstrip neutralization line (NL) is designed on the top of antenna surface to enhance the port isolation. The geometry is embedded on a jeans material to be apposite for the on‐body wearable applications. The antenna covers the frequency spectra from 3.14 to 9.73 GHz (around 102.4%) and fulfills the bandwidth requirements of WiMAX (3.2‐3.8 GHz), WLAN (5.15‐5.35/5.72‐5.85 GHz), C band downlink‐uplink (3.7‐4.2/5.9‐6.425 GHz), downlink defense (7.2‐7.7 GHz), and ITU (8‐8.5 GHz) bands. The port isolation is found to be more than 32 dB over the whole application bands. The antenna is appraised in a rich scattering environment with very minimal envelope correlation coefficient (ECC < 0.12) and great amount of diversity gain (DG > 9.8). The proposed MIMO antenna system is able to achieve the channel capacity loss (CCL) of less than 0.2 BPS/Hz throughout the whole operating band. The proposed structure is etched on an area of 30 × 50 mm2. The simulated and measured performances of the proposed antenna are in well‐matched state.  相似文献   

15.
A substrate integrated waveguide (SIW) circularly polarized (CP) antenna with omnidirectional radiation in the azimuthal plane is proposed. The antenna consists of five identical end‐fire CP antenna elements in a pentagonal array configuration, which is loaded on a circular substrate. Each element contains an H‐plane horn antenna in SIW structure and a printed dipole antenna. Five parasitic curve elements are introduced to improve the omnidirectional property of the antenna. Combined with complementary dipoles theory and SIW technology, prototype antenna is designed, fabricated and measured. With a low profile of 0.024λ0, the antenna has a 10‐dB return‐loss impedance bandwidth of 4.08% (2.4~2.5 GHz) and a 3‐dB axial‐ratio (AR) bandwidth of 5.76% (2.36~2.50 GHz). The antenna works well in the 2.45 GHz ISM band, with good cross‐polarization and excellent omnidirectional property.  相似文献   

16.
In this article, a miniaturized hybrid patch antenna is proposed that shows improved matching bandwidth and almost invariant radiation patterns. This antenna consists of a driven patch, reactive impedance surface (RIS) based ground plane in addition to the coplanar parasitic patches. The simulated and measured results show that the proposed antenna offers fractional bandwidth of 28% (S11 = ?10 dB, from 2.38 GHz to 3.18 GHz). When this antenna operates at 2.38 GHz, 2.68 GHz, 2.98 GHz, and 3.18 GHz, shows realized gain of 6.46 dBi, 6.69 dBi, 7.84 dBi, and 7.59 dBi, whereas the front‐to back (F/B) ratio is 15.62 dB, 20.15 dB, 20.67 dB and 20.92 dB, respectively. The pattern quality is very consistent over the matching bandwidth. Compared to the conventional patch antenna, dimension of the hybrid patch antenna has decreased by about 36%.  相似文献   

17.
A simple structure of broadband circularly polarized slot antenna based on coplanar waveguide (CPW) feeding is proposed in this article. To obtain circular polarization with a single feed, a transition from microstrip to CPW is designed to excite the even and odd modes of the CPW simultaneously. By adjusting the relative position and dimensions of the two circular patches introduced at the end of microstrip line and CPW, a 90° phase difference between two modes can be produced. When the two modes are coupled into the wide slot antenna, broadband circular polarization operation can be realized. The 10‐dB reflection coefficient bandwidth of the proposed antenna is 88.2% (2.49‐6.42 GHz) and 3‐dB AR bandwidth attains 50% (2.72‐4.49 GHz).  相似文献   

18.
In this article, a wide‐band circularly polarized slot antenna array with reconfigurable feed‐network for WiMAX, C‐Band, and ITU‐R applications is proposed. Different novel methods are used in proposed array to improve antenna features such as impedance matching, 3 dB axial‐ratio bandwidth (ARBW), gain, and destructive coupling effects. Miniaturized dual‐feed square slot antenna, with one attached L‐shaped strip and a pair of T‐shaped strip at ground surface for improving impedance matching and circular polarization (CP) purity, is presented. For further enhancement of CP attributes, reconfigurable sequentially rotated feed network is utilized to obtain wider 3 dB ARBW. Furthermore reconfigurable property of network gives controlling Right and Left handed CPs, respectively. Finally, a special form of Electromagnetic Band gap structure is employed on top layer of substrate that provides high isolation between radiating elements and array feed network to enhance overall performance of antenna. The measured results depict 3 dB ARBW from 4.6 to 7.2 GHz, impedance bandwidth from 3.3 to 8.8 GHz for VWSR<2, and peak gain of 10 dBi at 6 GHz. © 2015 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:825–833, 2015.  相似文献   

19.
A broadband high‐gain circularly polarized (CP) microstrip antenna operating in X band is proposed. The circular polarization property is achieved by rotating four narrow band linearly polarized (LP) microstrip patch elements in sequence. Since the conventional series‐parallel feed network is not conducive to the miniaturization of the array, a corresponding simplified feed network is designed to realize the four‐way equal power division and sequential 90° phase shift. With this feed network, the impedance bandwidth (IBW) of the CP array is greatly improved compared with that of the LP element, while maintaining a miniaturized size. Then, parasitic patches are introduced to enhance the axial ratio bandwidth (ARBW). A prototype of this antenna is fabricated and tested. The size of proposed antenna is 0.93λ0 × 0.93λ0 × 0.017λ0 (λ0 denotes the space wavelength corresponding to the center frequency 10.4 GHz). The measured 10‐dB IBW and 3‐dB ARBW are 13.6% (9.8‐11.23 GHz), 11.2% (9.9‐11.07 GHz) respectively, and peak gain in the overlapping band is 9.8 dBi.  相似文献   

20.
In this paper, a dual‐polarized cross‐dipole antenna with wide beam and high isolation is designed and analyzed for base station. The proposed antenna consists of two planar cross dipoles with four square patches, two L‐shaped microstrip lines, two ground plates, four parasitic patches, and a reflector. The square patches are placed between the center of cross dipoles to couple with L‐shaped microstrip lines. By introducing the parasitic patches, the wide beam can be realized. The measured results show that the proposed antenna achieves an impedance bandwidth (|S11| < ?10 dB) of about 18.7% (1.9‐2.35 GHz) and an isolation better than 30 dB. A measured gain of 5.7 dBi and a half‐power beamwidth over 120° at the center frequency are obtained. Furthermore, the size of the proposed antenna is only 0.5λ0 × 0.5λ0 × 0.22λ0 (λ0 is wavelength at the center frequency).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号