首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on the microstrip‐line/slot‐line hybrid transmission structure, a novel method of realizing dual‐wideband differential bandpass filter (DDBPF) is proposed and demonstrated in this paper. By virtue of hybrid transmission structure, the proposed DDBPF has intrinsic common mode (CM) rejection. Moreover, the dual‐wideband transmission performance of differential mode (DM) signal can be approached by using two dual‐mode stub‐loaded stepped‐impedance resonators. The two passbands of the proposed DDBPF are respectively centered at 2.76 GHz and 4.12 GHz which fractional bandwidths are 20.7% and 11.4%. The DM harmonic suppression can extend to 43.5 GHz with rejection level of 13 dB. The CM attenuation of DDBPF can reach 60 dB within DM passband. Furthermore, the CM suppression with attenuation level of 20 dB is ranging from 0.5 GHz to 43.5 GHz. The measurement results are in good agreement with the simulation results, which validates the effectiveness of proposed design methodology.  相似文献   

2.
In this paper, a balanced dual‐band bandpass filter (BPF) with high selectivity and low insertion loss performance is presented by employing stub loaded resonators (SLRs) and stepped impedance resonators (SIRs) into balanced microstrip‐slotline (MS) transition structures. The balanced MS transition structures can achieve a wideband common‐mode (CM) suppression which is independent of the differential‐mode (DM) response, significantly simplifying the design procedure. Six varactors are loaded into the resonators to achieve the electrical reconfiguration. The proposed balanced dual‐band BPF can realize quasi‐independently tunable center frequencies and bandwidths. A tuning center frequency from 2.48 to 2.85 GHz and a fractional bandwidth (20.16%‐7.02%) with more than 15 dB return loss and less than 2.36 dB insertion loss are achieved in the first passband. The second passband can realize a tuning center frequency from 3.6 to 3.95 GHz with more than 12 dB return loss and less than 2.38 dB insertion loss. A good agreement between the simulated and measured results is observed.  相似文献   

3.
A wideband balanced microstrip‐to‐microstrip vertical transition is proposed. This vertical transition is based on the back‐to‐back hexagonal microstrip lines with a slot on the common ground. The etched slot is used to achieve the vertical transmission of differential‐mode signal and the suppression of common‐mode (CM) signal. The back‐to‐back hexagonal microstrip lines enable the transition to obtain wide bandwidth. One prototype shows the fractional bandwidth (|Sdd11| ≤ ?15 dB) of 63%, the minimum (maximum) insertion loss of 0.7 dB (1.9 dB), and the minimum CM suppression inside passband of 27 dB.  相似文献   

4.
In this article, a balanced microstrip dual‐band bandpass filter (BPF) is designed. The proposed filter is achieved by employing a microstrip U‐shape half‐wavelength resonator, a folded stub‐loaded resonator and balanced microstrip/slotline transition structures. The center frequencies and the fractional bandwidths of the two differential‐mode (DM) passbands can be controlled independently by changing the physical lengths of the two resonators and the gaps between each resonator, respectively. The balanced microstrip/slotline transition structures can achieve a wideband common‐mode (CM) suppression. Meanwhile, the DM passbands are independent from the CM responses, which significantly simplify the design procedure. In addition, a wide DM stopband is also realized. In order to validate the design strategies, a balanced dual‐band BPF centered at 2.57 and 3.41 GHz was fabricated and a good agreement between the simulated and measured results is observed.  相似文献   

5.
An ultra‐wideband compact bandpass filter (BPF) with configurable stopband by tuning transmission zeroes is proposed in this paper. The ultra‐wideband bandpass response is based on a diamond‐shape resonator consisting of a pair of broadside coupled diamond‐shape microstrip lines, within which a diamond shape defected ground structure (DGS) is etched in the middle. Flexible transmission zeros realized by open and short stubs can be easily adjusted to improve band selectivity and harmonic suppression. Measurement result shows that the dedicated device has a 3 dB fractional bandwidth of 148% (0.94‐6.36 GHz) with 20 dB rejection stopband from 6.87 to 9.7 GHz (77.5%) which agrees good with the simulate performance. The overall size of the proposed BPF is 0.27 λg × 0.23 λg.  相似文献   

6.
In this article, a novel inverted L‐shaped microstrip‐fed wideband circularly polarized (CP) modified square‐slot antenna is designed. By cutting a pair of triangle chamfers and introducing a pair of triangle patches at the square‐slot, the antenna achieves a wideband CP radiation. Moreover, CP performance of the antenna can also be remarkably enhanced by protruding an L‐shaped strip and embedding a tuning rectangle slot into the slot ground. The measured results demonstrate that the axial‐ratio bandwidth for AR < 3 is 75.1% (from 4.45 to 9.8 GHz) and the impedance bandwidth (|S11| < ?10 dB) reaches 65.8% (from 4.95 to 9.8 GHz). In addition, surface current studies are performed to illustrate the operating mechanism of CP operation, and the antenna has bidirectional radiation characteristics with an average gain of ~4 dBic within the CP band.  相似文献   

7.
This paper presents a novel planar balanced bandpass filter (BPF) with wideband common mode (CM) noise suppression and in‐band CM noise absorption using coupled lines (CLs) with short‐circuited stubs to realize high selectivity and wideband differential mode (DM) filtering performance. Two one‐quarter wavelength stubs loaded with grounded resistors are introduced to realize wideband CM noise suppression. Thus, CM noise can be suppressed under a certain level at all frequencies. Four resistors are used to achieve CM noise absorption by dissipating the CM noise into heat, which can avoid the noise being reflected to the communication system and realize a wide absorption bandwidth with 90% absorption efficiency. For demonstration, an absorptive balanced BPF operating at 3.5 GHz with wide 3‐dB fractional bandwidth (FBW) of 79.43% is fabricated and experimentally validated. It is worth noted that the absorptive balanced BPF can realize broadband CM noise suppression from 0 to 8 GHz, and the CM noise is well absorbed more than 10 dB from 2.41 to 4.63 GHz. Besides, wideband CM noise absorption with 90% efficiency from 2.51 to 4.60 GHz is realized, which indicates potential applications in improving the performance of the balanced radio frequency (RF) circuits. Good agreements between the simulated and measured results are observed.  相似文献   

8.
A novel wideband microstrip bandpass filter (BPF) based on a coupled‐stub loaded resonator (CSLR) is presented in this article. The CSLR is constructed by attaching one short‐circuited parallel coupled microstrip line (PCML) in shunt to a high impedance microstrip line. The filter bandwidth can be conveniently controlled via reasonable adjusting of the impedance of PCML. Moreover, new defected microstrip structures (DMSs) introduced in the PCML functions as a means of adjusting the positions of transmission zeros, created by the PCML. The resonant mode and transmission zero chart are given, indicating that the higher modes could be suppressed by the transmission zeros. Finally, to validate the proposed method, two wideband BPF filters with and without DMSs centered at 3 GHz with 3 dB fractional bandwidth of 87% are designed and fabricated. The measured results show that both the return losses are better than 15.8 dB, while the BPF with DMSs has a ?19.4 dB isolation wideband from 1.57 to 4.23 . The measured results are in excellent agreement with full‐wave electromagnetic simulation results. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:122–128, 2015.  相似文献   

9.
This study presents a wideband bandpass filter (WBBPF) with wide and high stopband suppression by loading a stepped‐impedance resonator (SIR). The prototype of WBBPF is composed of an inverted π‐shaped resonator with T‐shaped resonator and open stub loaded, centrally. Odd‐/even‐mode analysis technique is employed to characterize the resonant properties of this prototype. Then, a SIR is loaded to this filter, asymmetrically, to improve the out‐of‐band performance. For experimental validation, a WBBPF is designed, fabricated, and tested. The measurement results show that the center frequency of WBBPF is located at 5.095 GHz, and the 3‐dB fraction bandwidth is about 71%. Plus, the out‐of‐band suppression with 30‐dB rejection level can be extended to 18.17 GHz.  相似文献   

10.
This article presents two new types of tunable filters with constant absolute bandwidth using varactor‐loaded microstrip resonators. First, the second‐ and third‐order Butterworth tunable filters are designed based on the parallel coupled‐line J inverters. Second, a fourth‐order Chebyshev tunable filter is designed based on the alternative J/K inverters, in this design, two adjacent resonators are coupled with each other through a short‐circuited transmission line as the K inverter. The proposed two topologies can be easily extended to high‐order tunable filter. Three tunable bandpass filters with J and alternative J/K inverters, respectively, are built with a tuning range from ~1.8 to ~2.3 GHz. The measured second‐order filter has a 3‐dB bandwidth of 160 ± 6 MHz and an insertion loss of 2.4–3.8 dB. The third‐order filter shows a 3‐dB bandwidth of 197 ± 5 MHz and an insertion loss of 3.8–4.8 dB. The fourth‐order filter shows a 3‐dB bandwidth of 440 ± 5 MHz and an insertion loss of 2.1–2.6 dB. For all the designed filters, the measured results are found in excellent agreement with the predicted and simulated results. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:681–689, 2014.  相似文献   

11.
A novel design of a balanced wideband power divider (PD) with enhanced common‐mode (CM) suppression is proposed. The top and bottom layers of the structure contain tapered microstrip line. Those microstrip lines are coupled via slotline in the ground plane, which is located at the middle layer. With appropriate placement of the slotline, the coupling between the slotline mode and the differential‐mode (DM) signals can be maximized, while that between the slotline mode and the CM signals can be minimized. Simulated and measured results show that the proposed PD has equal power division, low insertion loss, and good return loss. In the measurement, the fractional bandwidth of the measured ?10 dB (DM) return loss is about 101% (1.82–5.35 GHz), the insertion loss for the DM signals is less than 5 dB, the suppression of the CM signals is higher than 45 dB, and the DM isolation is better than 10 dB over the fractional bandwidth. © 2013 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:437–442, 2014.  相似文献   

12.
A single‐fed circularly polarized square shaped wide slot antenna with modified ground plane and microstrip feed has been presented. The field in the slot is perturbed by introducing an antipodal strips section attached with a microstrip line to produce circular polarization in a wide band of frequencies. The antipodal strip section consists of a group of four strips of unequal length and separation. The presence of asymmetric perturbations in the slot is mainly responsible for exciting two orthogonal modes in the slot having equal magnitude and 90° phase difference which results in circular polarization. A wide bandwidth of 3.3 GHz (4.4 GHz‐7.7 GHz) has been achieved for an axial ratio value AR < 3 dB with the minimum axial ratio value being 0.3 dB. The impedance bandwidth for |S11| < ?10 dB ranges from 4.3 GHz to 8 GHz, and therefore covers most of the C‐band communication systems. The antenna exhibits stable radiation patterns throughout the circular polarization bandwidth with a gain around 6 dBi in entire operational bandwidth. A prototype of antenna was fabricated and measured. The antenna has a planar size 0.40λ0 × 0.40λ0 and thickness of 0.02λ0 where λ0 is the wavelength in free space at the lowest frequency. With its compact size and low profile, the antenna is a favorable choice for WLAN (5.15‐5.85 GHz) and a wide variety of C‐band wireless applications.  相似文献   

13.
In this article, a double‐T‐shaped stub centrally loaded uniform impedance resonator (UIR) is introduced and its resonant characteristics are well clarified, which provided a simple approach for triple‐mode wideband bandpass filter (BPF) design. The double‐T‐shaped stub consists of a T‐shaped stub at the center of UIR and two shunt uniform‐impedance stubs at the T‐shaped stub. Furthermore, loading technique for zero‐voltage point is employed to guide design procedure from UIR to the proposed resonator. The resonant frequencies of the first three modes for the resonator can be free to adjust by the length of the UIR and the two kinds of stub. Finally, a compact wideband BPF is designed, fabricated, and measured. The measured results are in good agreement with the full‐wave simulation results. The realized wideband filter exhibits a 3 dB fractional bandwidth of 69.1% with good in‐band filtering performance, wide stopband, and sharp out‐of‐band rejection skirt.  相似文献   

14.
In this paper, a direct synthesis approach is proposed for design of a compact wideband differential‐mode (DM) bandpass filter (BPF) on a composite triple‐mode resonator. By virtue of intrinsic common‐mode (CM) suppression in slotline portion, only the DM transmission performances need to be focused on in our design, so as to facilitate the design process. Consequently, a synthesis approach based on an equivalent simplified network is established to design this DM BPF, resulting to directly determine all the circuit element values. A wideband DM BPF is then designed to validate effectiveness of proposed synthesis method. Finally, two circuit prototypes have been designed, fabricated, and measured. The synthesized, simulated and measured results agree well with each other over a wide operating band, which has demonstrated the proposed DM BPFs' attractive performances, such as wide bandwidth of operation, sharpened frequency selectivity, and good CM suppression.  相似文献   

15.
In this article, a wideband bandpass filter (BPF) is designed using the comb slotted substrate integrated waveguide (SIW) cavities. The comb‐shaped slots engraved on the SIW cavity are used to constitute a novel multiple‐mode resonator (MMR) that accomplishes a wide passband of operation. Further, a Jerusalem cross defected ground structure (DGS) is introduced to miniaturize it and enhance filter performance in the pass band and stop band. The filter is fabricated on RT/Duroid 5880 having dielectric constant 2.2 and tested to prove the validity of design. The filter achieves 3 dB fractional bandwidth of 48%, return loss above 14 dB and insertion loss of 1.1 dB in the passband. Also, the proposed filter has steep selectivity and wide upper stopband with 25 dB attenuation from 16.7 to 24 GHz.  相似文献   

16.
A novel wideband bandpass filter based on folded substrate integrated waveguide (FSIW) is presented in the article. Five square complementary split‐ring resonators (CSRRs) are etched in the middle layer of the FSIW. By adjusting the physical size of the CSRR structure, the resonant frequency of the CSRRs can be tuned at the same time and the stopband performance can be changed. As transverse electromagnetic (TEM) mode can be transmitted in the stripline, FSIW excited by stripline shows wider passband than that excited by microstrip line directly. To achieve perfect impedance matching, two microstrip lines to stripline transitions are added in two ports of the filter. The proposed bandpass filter exhibits compact size, high selectivity, good stopband rejection, lower radiation loss, and wideband performances. The measured results show that the fractional bandwidth of the filter is about 35.5%. The measured return loss is better than 15 dB from 4.84 GHz to 6.90 GHz, and the insertion loss is less than 1.2 dB. The comparison between the simulated results and the measured ones validate the possibility of the technology that combines the FSIW and CSRR.  相似文献   

17.
This article proposes a microstrip dual‐band bandpass filter that uses parallel‐connected open‐loop ring resonators. Compared to many microstrip dual‐band filters, the advantages of using microstrip open‐loop ring resonators are easy calculation (half‐guided‐wavelength), easy fabrication (equal width for all 50‐Ω lines and without grounding holes), and direct connection to external feed lines (reducing insertion loss caused by gap couplings). Another advantage of the filter is an asymmetrical feed on the ring resonator that provides sharp rejections at its adjacent bands. The input and output matches of resonators to the external feed lines are derived using a simple transmission‐line theory. The results of the derivation provide a simple design rule for filter designers. Simulated and measured results are presented with good agreement. The filter has minimum insertion loss of 1.25 dB at 1.85 GHz and 1.6 dB at 2.33 GHz. The 3‐dB fractional bandwidths are 5.9% for the 1.9‐GHz bandpass filter and 4.7% for the 2.4‐GHz bandpass filter, respectively. © 2008 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2008.  相似文献   

18.
A balanced dual‐band bandpass filter (BPF) with independently tunable differential‐mode (DM) frequencies is proposed in this letter. The proposed BPF is composed of complementary split‐ring resonators (CSRRs) etched on the ground and varactors loaded on the resonators. A balanced stepped‐impedance microstrip‐slotline transition structure is introduced to transfer the DM signals successfully and block the common‐mode (CM) signals transmission. Good DM transmission and CM suppression can be achieved. Moreover, by changing the reverse bias voltages of the varactors loaded on coupling CSRRs, two DM resonant frequencies of the proposed balanced BPF can be tuned independently. To verify the feasibility of the design method, a balanced BPF with DM frequency ranging from 0.80 GHz to 1.12 GHz and 1.55 GHz to 2.05 GHz is fabricated and measured. Good agreement between the simulation and measurement results demonstrate the validity of the design.  相似文献   

19.
A balanced second‐order dual‐band bandpass filter (BPF) with independently controllable center frequencies and bandwidths based on coupled stepped‐impedance resonators (SIRs) is designed in this article. To obtain a dual‐band differential‐mode (DM) response, two pairs of SIRs with different resonant frequencies are employed in the design. The bandwidths of the two DM passbands can be independently tuned by adjusting the coupling gaps and coupling lengths of the corresponding resonators. In addition, three transmission zeros are realized to enhance the selectivity of the DM passbands. The microstrip‐slotline transition structure is utilized to achieve a wideband common‐mode (CM) suppression. Moreover, the DM responses are independent of the CM ones, which significantly simplify the design procedure. Finally, a balanced dual‐band BPF is designed to validate the design method and a good agreement between the simulated and measured results is observed.  相似文献   

20.
A novel multistubs loaded resonator (MSLR) is proposed in this article, which is constructed by several open‐ and short‐circuited stubs. The analysis shows that it is characterized by four resonant modes. Then, the MSLR is applied in the design of a compact ultra‐wideband (UWB) bandpass filter. The measured results show that its 3dB bandwidth can cover [3.0, 11.5] GHz, that is, 3 dB fractional bandwidth is 117%, and the return loss within the passband is greater than 15 dB. Especially, the roll‐off rate is higher than 33 dB/GHz and more than 40 dB harmonic suppression can be achieved up to 17 GHz. In order to suppress the interference of some undesired narrowband signal such as wireless local‐area network (WLAN) radio signal, a notched band is created for the UWB bandpass filter, which is realized by forming one stepped slot on each of the feedlines, respectively. The measured results show that a notched band with 2.01% fractional bandwidth at the center frequency of 5.85 GHz can be achieved and its suppression is about ?19 dB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号