共查询到20条相似文献,搜索用时 0 毫秒
1.
Ashish Gupta 《国际射频与微波计算机辅助工程杂志》2018,28(6)
A miniaturized dual‐band CPW‐fed Metamaterial antenna with modified split ring resonator (SRR) loading has been presented in this paper. Proposed antenna comprises a tapered rectangular patch with a slot in which an elliptically SRR has been loaded to achieve miniaturization. Proposed antenna shows dual band operations in the operating band 3.25‐3.42 and 3.83‐6.63 GHz, respectively. It has been observed that lower mode (at 3.36 GHz) is originated by means of modified SRR. SRR is being modified by small meandered line inductor which is placed instead of strip. This provides an extra inductance to SRR resulting miniaturization. Overall electrical size of the proposed antenna is 0.222 × 0.277 × 0.017 λ0 at 3.36 GHz. Second band is due to coupling between feed and ground planes. The antenna offers an average peak gain of 1.72 and 3.41 dB throughout the first and second band respectively. In addition to that this antenna exhibits perfect omnidirectional and dipolar radiation patterns at xz‐ and yz‐ plane respectively. Due to consistent radiation pattern, ease of fabrication, and compact nature this antenna can be used for wireless applications such as worldwide interoperability for microwave access (WiMAX), industrial, scientific and medical (ISM) band, WLAN/Wi‐Fi bands. 相似文献
2.
Nilesh K. Tiwari Abhishek Sharma Surya P. Singh M. Jaleel Akhtar Animesh Biswas 《国际射频与微波计算机辅助工程杂志》2020,30(2)
The purpose of this article is to provide a comprehensive investigation on the resonance phenomenon of microstrip line coupled complementary split‐ring resonator (CSRR) with different orientation and relative size. It is shown that when the relative size of the CSRR is smaller than the host line, the CSRR with its slit oriented orthogonal to the line axis will not excite effectively and show weak resonance behavior. However, when the slit is positioned along the line axis, the cross‐polarization effect comes into play, which excites the CSRR through the mixed coupling. To ensure the correctness, several numerical simulations are carried out for different substrate height and relative permittivity. Finally, a prototype is fabricated and measured for the experimental validation. 相似文献
3.
Haotian Ling Yifei Zhang Pengfei Qian Pingjian Chen Yanpeng Shi Yiming Wang Qian Xin Sha Huan Qingpu Wang Aimin Song 《国际射频与微波计算机辅助工程杂志》2020,30(8)
A novel band‐stop filter with single‐loop split ring resonators (SRRs) is proposed for spoof surface plasmon polaritons (SPPs) at millimeter wave frequencies, achieving a miniaturized size of 0.052λ0 × 0.278λ0 at its resonant frequency. The SRRs provide both a low‐pass response as the rectangular corrugations used in the conventional SPPs and an additional band‐stop response induced by the resonance of SRRs. To verify this design, a back‐to‐back device with two coplanar waveguides as the input and output feeding was fabricated and characterized, the measured S‐parameters of which agree well with the simulation. The measured stop band is centered at 49 GHz with a ?10‐dB bandwidth of 4.1 GHz and a high Q‐factor of 93, in which the maximum attenuation is 31 dB. The filter has a low insertion loss of less than 2.8 dB in the pass band. Such approaches may find many applications to achieve compact millimeter wave circuits. 相似文献
4.
Present article embodies the design and analysis of slotted circular shape metamaterial loaded multiband antenna for wireless applications with declination of SAR. The electrical dimension is 0.260 λ × 0.253 λ × 0.0059 λ (35 × 34 × 0.8 mm3) of proposed design, at lower frequency of 2.23 GHz. The antenna consists of circular shape rectangular slot as the radiation element loaded with metamaterial split ring resonator (SRR) and two parallel rectangular stubs, etched rectangular single complementary split‐ring resonator (CSRR) and reclined T‐shaped slot as ground plane. Antenna achieves hepta bands for wireless standards WLAN (2.4/5.0/5.8 GHz), WiMAX (3.5 GHz), radio frequency identification (RFID) services (3.0 GHz), Upper X band (11.8 GHz—for space communication) and Lower KU band (13.1 GHz—for satellite communication systems operating band). Stable radiation patterns are observed for the operating bands with low cross polarization. The SRR is responsible for creating an additional resonating mode for wireless application as well as provide the declination in SAR about 13.3%. Experimental characteristic of antenna shows close agreement with those obtained by simulation of the proposed antenna. 相似文献
5.
In this article, a miniaturized fork‐shaped patch ultra‐wideband (UWB) planar wide‐slot antenna with dual band‐notched characteristics is proposed. With fork‐shaped patch, ultra‐wideband impedance matching from 3.1 to 13.2 GHz is easily achieved. Then, two novel and simple methods are applied to solve the difficulty for UWB slot antennas with fork‐shaped patch to realize band‐notched characteristics. By etching one pair of I‐shaped resonators on both branches of the fork‐shaped structure and adding a rectangular single split‐ring resonator in the rectangular openings of fork‐shaped patch, the wireless local area network (WLAN) band from 5.5 to 6.1 GHz and the International Telecommunication Union (ITU) 8 GHz band from 7.9 to 8.7 GHz are rejected, respectively. The coplanar waveguide‐fed UWB antenna is successfully designed, fabricated, and measured. The measured and simulated results show a good agreement. The antenna provides nearly stable radiation patterns, high gains and high radiation efficiency. 相似文献
6.
The simulation and experimental studies of an aperture‐coupled wideband dual segment rectangular dielectric resonator antenna with metamaterial for C‐band applications are presented in this paper. The antenna consists of Alumina (Al2O3) ceramic as upper segment and Teflon as lower segment. The combination of circular‐shaped coplanar split‐ring resonator and conducting strip has been used as metamaterial superstrate. With the use of metamaterial superstrate, the bandwidth of the antenna is increased by 48% through simulation and 22% experimentally. The broadside radiation pattern of the antenna is converted into directive radiation pattern with reduced beamwidth when metamaterial superstrate is used. The peak gain of the antenna is also enhanced by 33% through simulation and 31% experimentally with the use of metamaterial superstrate. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:646–655, 2014. 相似文献
7.
A miniaturized substrate integrated waveguide (SIW) bandpass filter using fractal open complementary split‐ring resonators (FOCSRRs) unit‐cell is proposed. The proposed structure is realized by etching the proposed FOCSRR unit‐cells on the top metal surface of the SIW structure. The working principle of the proposed filter is based on the evanescent‐mode propagation. The proposed FOCSRRs behave as an electric dipoles in condition of the appropriate stimulation, which are able to generate a forward‐wave passband region below the cutoff frequency of the waveguide structure. Since, the electrical size of the proposed FOCSRRs unit‐cell is larger than the conventional OCSRRs unit‐cell; therefore, the FOCSRR unit‐cell is a good candidate to miniaturize the SIW structure. The proposed filter represents high selectivity and compact size because of the utilization of the sub‐wavelength resonators. The introduced filter is simulated by a 3D electromagnetic simulator. In order to validate the ability of the proposed topology in size reduction, 1‐ and 2‐stage of the proposed filters have been fabricated based on the standard printed circuit board process. The measured S‐parameters of the fabricated filters are in a good agreement with the simulated ones. The proposed SIW filters have many advantages in term of compact size, low insertion loss, high return loss, easy fabrication and integration with other circuits. It is the first time that the FOCSRR unit‐cells were combined with the SIW structure for miniaturization of this structure. Furthermore, a wide upper‐stopband with the attenuation >20 dB in the range of 3–8 GHz is achieved. The results show that, a miniaturization factor about 75.5% has been obtained. 相似文献
8.
9.
In this study, a simple broadband circularly polarized (CP) printed monopole antenna for S/C‐band applications is proposed. The CP antenna is composed of a falcate‐shaped monopole with a right‐angle trapezoid stub, then wide impedance and axial ratio (AR) bandwidths are achieved. By placing one rectangular split‐ring resonator above the stub for generating upper CP mode, both of impedance and CP performances are further improved. The proposed antenna is fabricated on a FR4 substrate and measured. The measured ?10‐dB impedance bandwidth is 107%, ranging from 2.4‐7.9 GHz, and the measured 3‐dB AR bandwidth is 94% (2.4‐6.6 GHz), covering the entire wireless local area network (WLAN) and WiMAX bands. 相似文献
10.
Present article embodies the design and analysis of an octagonal shaped split ring resonator based multiband antenna fed at vertex for wireless applications with frequency‐band reconfigurable characteristics. The proposed antenna is printed on FR4 substrate with electrical dimension of 0.4884 λ × 0.4329 λ × 0.0178 λ (44 × 39 × 1.6 mm3), at lower frequency of 3.33 GHz. The antenna consists of SRR based vertex fed octagonal ring as the radiation element and switchable reclined L‐shaped slotted ground plane. Antenna achieves six bands for wireless standards viz: upper WLAN (5.0/5.8 GHz), lower WiMAX (3.3 GHz), super extended C‐band (6.6 GHz), middle X band (9.9 GHz—for space communication), and lower KU band (15.9 GHz—for satellite communication systems operating band). Stable radiation patterns are observed for the operating bands with low cross polarization. The proposed design achieves hexa band characteristics during switching ON state of PIN diode located at reclined L‐shaped slot in the ground plane. Experimental characteristic of antenna shows close agreement with those obtained by simulation of the proposed antenna. 相似文献
11.
In this article, a compact electromagnetic band‐gap (EBG) structure is presented to reject harmonics of a crystal oscillator in the power distribution network. Compared to traditional EBG structures of complementary split ring resonator (CSRR), the proposed CSRR adding lumped capacitors (LC‐CSRR) provides a higher rejection‐performance at the series self‐resonant frequency of the lumped capacitors. A four‐layer printed circuit board is designed and fabricated to measure the S‐parameters of the proposed EBG structure, and a harmonics power testing board is presented to measure rejection performance of the proposed EBG structure. The measured results show that the proposed EBG obtains an attenuation of 60 dB over the whole range of global navigation satellite system band. By inserting the proposed EBG structure of LC‐CSRR, we measure that the harmonics powers can be decreased by 28.8 dB between the input and output of the EBG. 相似文献
12.
A novel super compact filter based on half‐mode substrate‐integrated waveguide (HMSIW) technology loaded by the modified complementary split‐ring resonator (MCSRR) is proposed. The working principle of the proposed filter is based on the evanescent‐mode propagation technique. According to this technique, by loading the complementary split‐ring resonator (CSRR) on the metal surface of the substrate‐integrated waveguide (SIW) structure, an additional passband below the SIW cutoff frequency can be obtained. In order to miniaturize the physical size of the conventional CSRR, a new method is introduced. In the proposed MCSRR unit‐cell, the meander slots are carved inside all of the interior space of the ring. Accordingly, the length of the slot is increased which leads to an increase in the inductor and capacitor of the proposed structure without occupying the extra space. Therefore, the electrical size of the proposed MCSRR unit‐cell is reduced. Consequently, the resonance frequency of the proposed MCSRR unit‐cell is decreased compared to the conventional CSRR with the same sizes. Namely, the lower resonance frequencies can be achieved by using this technique without increasing the size of the unit‐cell. In order to confirm the miniaturization technique, two HMSIW filters loaded by the proposed MCSRR unit‐cell are designed, fabricated, and experimental verifications are provided. The results show that a miniaturization about 67% is achieved. 相似文献
13.
《浙江大学学报:C卷英文版》2012,(7):552-558
A wideband composite right/left handed transmission line (CRLH TL) in conjunction with its corresponding equivalent circuit model is studied based on a cascaded complementary single split ring resonator (CCSSRR).The characterization is performed by theory analysis,circuit simulation,and full-wave electromagnetic (EM) simulation.The negative refractive index (NRI) and backward wave propagation performance of the CRLH TL are demonstrated.For application,a bandpass filter (BPF) with enhanced out-of-band selectivity and harmonic suppression operating at the wireless local area network (WLAN) band is designed,fabricated,and measured by combining the CRLH TL with a complementary electric inductive-capacitive resonator (CELC).Three CELC cells with wideband stopband performance in the conductor strip and ground plane,respectively,are utilized in terms of single negative permeability.The design concept has been verified by the measurement data. 相似文献
14.
In this article, a miniaturized nonbianisotropic left‐handed metamaterial composed of spiral‐S‐shaped resonator and conducting wire is proposed. This symmetrical structure avoids bianisotropy and it shows a controllable low‐loss double negative (DNG) band. Its electrical size is less than half of the well‐known S‐shaped resonator, which makes it to be considered as a good homogenous effective media. Although the structure is not uniplanar, it is not vulnerable to fabrication errors stem from misalignment of both sides. Both the simulation and experiment results demonstrate left‐handed properties. Also, a circuit model is proposed which can accurately predict the magnetic resonant frequency. © 2011 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2011. 相似文献
15.
This article presents the design of a miniaturized dual‐band antenna for long‐term evolution (LTE) application is presented. In the basic antenna design, split ring resonator was loaded in the radiating plane of the patch and frequency of resonance was further modified with the help of E‐shaped stub. The antenna has been fabricated using FR‐4 substrate and the measured dual bands at 2.11 and 2.665 GHz are found in a close match with the simulated data. By placing a thin dielectric resonator of permittivity ε r = 10.2 and thickness of 1.27 mm, two closely spaced narrow bands are obtained at 2.217 and 2.28 GHz. A novel metamaterial unit‐cell having near‐zero refractive index is designed and mounted above the dielectric resonator. This stack configuration generates triple narrow frequency band in the LTE 2 GHz spectrum range. The overall size of the proposed antenna is 20 × 25 mm2. 相似文献
16.
Ali Kursad Gorur 《国际射频与微波计算机辅助工程杂志》2018,28(4)
In this article, interdigital capacitor loaded co‐directional split ring resonators (CDSRRs) and their dual‐band bandpass filter applications are proposed. The proposed resonator is formed by nested open loop resonators having open ends at the same place unlike conventional split ring resonators (SRRs). In addition, the inner open loop resonator has interdigital capacitor located between the open ends. The proposed resonator exhibits dual resonance behavior with a small center frequency ratio. Both of resonance frequencies can be controlled due to the changes in the interdigital capacitor and the electrical length of the outer resonator. A dual‐band microstrip bandpass filter is designed by using the proposed CDSRR. Two CDSRRs are used to obtain two poles in each passband. Overall electrical length of the designed filter is 0.23 λg × 0.14 λg (0.0329 λg2), where λg is the guided wavelength for the used substrate at the lowest passband center frequency of 1.8 GHz. A small center frequency is obtained by adjusting the second passband at 2.27 GHz. A very wide upper stopband, closely spaced passbands, low insertion losses and high selectivity at both passbands can be obtained by means of the proposed structure. The designed filter was also fabricated and tested. The measured results show a very good agreement with the predicted results. 相似文献
17.
In this paper, newly proposed complementary split ring resonator (CSRR) structures of fractal geometries are used for microwave imaging of coated dielectric structures in order to detect concealed voids or similar inclusions. The proposed fractal‐based CSRR structures are found to display improved sensitivity as compared to the conventional square CSRR sensors of same cross‐sectional dimensions, and thus appear to be more appropriate for imaging applications. Detailed analyses of different orders of square Sierpinski fractals have been carried out. Raster scanning of the test region is performed and various parameters such as the magnitude and phase at unloaded resonant frequency, along with the shift in resonant frequency when loaded with the test structure are measured. Furthermore, both qualitative and quantitative images of the test structure are retrieved in terms of all the three measured parameters. Simulation and experimental results demonstrate the applicability of the proposed sensor for microwave imaging. 相似文献
18.
Enrique J. Rubio Martínez‐Dueas Carlos Moreno de Jong van Coevorden Oleg V. Stukach Nikolay V. Panokin Johan Gielis Diego Caratelli 《国际射频与微波计算机辅助工程杂志》2019,29(4)
This research study reports the assessment of complementary split ring resonators based on Gielis transformation as basic elements for the design of high‐performance microwave components in printed technology. From the electromagnetic simulation of said structures, suitable equivalent circuit models are extracted and analyzed. Physical prototypes are fabricated and tested for design validation. The obtained results confirm that the adoption of supershaped geometries enables the synthesis of very compact scalable microwave filters. 相似文献
19.
A balanced wideband bandpass filter (BPF) with a high frequency selectivity, controllable bandwidth, and good common‐mode (CM) suppression based on nested split‐ring resonators (SRRs) is proposed in this article. The proposed nested SRRs are applied to form three transmission poles (TPs) that can achieve a wide differential‐mode (DM) passband centered at 3.0 GHz. Meanwhile, two transmission zeros (TZs) are generated to realize a high frequency selectivity of the DM passband. Moreover, TPs and TZs can be quasi‐independently controlled by changing the physical lengths of SRRs and the gaps between them, which can greatly improve the flexibility and practicality of the design. The proposed balanced BPF is fed by balanced microstrip‐slotline (BMS) transition structures. For the CM signals, the BMS transition structures can achieve a good wideband CM suppression without affecting the DM ones, thereby simplifying the design procedure. In order to validate its practicability, a balanced wideband BPF is fabricated and a good agreement between the simulated and measured results is obtained. 相似文献
20.
In this paper, two ultracompact power dividers based on the substrate integrated waveguide (SIW) and half‐mode SIW (HMSIW) technologies loaded by complementary split‐ring resonators (CSRRs) are presented. The presented structures are designed based on the theory of evanescent mode propagation. To obtain a size reduction, the CSRR unit cells are etched on the metallic surface of the SIW and HMSIW structures. First, a two‐way HMSIW power divider is reported. In this circuit, the concept of HMSIW is utilized aiming at a further size reduction in addition to the size reduction by the CSRR unit cells. Then, a four‐way SIW power divider is designed so that the direct coaxial feed is used for the input port and microstrip transmission lines are used for the output ports. Both two‐way and four‐way SIW/HMSIW power dividers at 5.8 GHz covering WLAN are designed, fabricated, and measured. They respectively have 0.18 × 0.21 λg2 and 0.38 × 0.21 λg2 total size. A fair agreement between simulated and measured results is achieved. The measured insertion losses are 0.5 ± 0.5 and 0.6 ± 0.5 dB for the two‐way and four‐way SIW/HMSIW power dividers, respectively, in the operating band of interest. 相似文献