首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
This article presents the design and implementation of a single‐layer wideband millimeter‐wave circularly polarized (CP) monopulse cavity‐backed antenna based on substrate integrated waveguide (SIW) technology. The antenna consists of a 2× 8 array of CP cavity‐backed antenna elements, a 90° 3‐dB coupler, power dividers, and phase shifters. In order to enhance the operating bandwidths, the sequential rotation feeding technology is adopted in the design of the monopulse antenna. To validate the proposed concept, a prototype operating at 42 GHz was fabricated and measured. The measured 3‐dB axial ratio (AR) bandwidth for the sum beam can cover a frequency range from 37 to 46 GHz. The measured gain for the sum beam at the center frequency of 42 GHz is 17.5 dBiC, while the null‐depth of the difference beam is measured to be ?36.8 dB. The proposed monopulse antenna has advantages of low‐cost, easy‐fabrication, and easy integration with planar circuits.  相似文献   

2.
A wideband beam scanning circularly polarized (CP) leaky‐wave antenna (LWA) at Ku band is proposed based on the printed ridge gap waveguide (PRGW). In this design, the printed technology is used to realize the ridge gap waveguide (RGW) structure, and a substrate layer is introduced to replace the air gap layer in conventional RGWs. The proposed beam scanning CP LWA has been fabricated. Measured results of the fabricated antenna prototype are carried out to verify the simulation analysis. It provides a wide impedance bandwidth of 22% ranging from 12 to 15 GHz while performing continuous frequency beam scanning from ?2° to +47°. Furthermore, it maintains the excellent CP characteristic with axial ratio (AR) below 1.5 dB and a flat gain response with variation less than 2 dB in the entire operation frequency band.  相似文献   

3.
This article presents design and analysis of three wide band zeroth‐order resonance antennas (antennas I, II, and III) using composite right and left‐handed transmission line (CRLH‐TL) approach. Coplanar waveguide technology, single layer via‐less structures are used to have the design flexibility. The bandwidth characteristics are analyzed by using lumped parameters of CRLH‐TL. By introducing a simple slot in the ground plane of antenna I both bandwidth enhancement and circularly polarization characteristics are achieved in antenna II. Another quarter wave L‐shaped slot has been introduced in the ground plane of antenna II to introduce a notch band in the frequency response of antenna III. Achieved measured 10 dB return loss bandwidth of antenna I and antenna II are 960 (3.3‐4.26 GHz) and 2890 MHz (2.77‐5.66 GHz), respectively. Antenna III offers measured 10 dB return loss bandwidth of 3220 MHz (2.32‐5.54 GHz) with a band notch from 2.39 to 2.99 GHz that isolates the 2.4 GHz WLAN and 3.5 GHz WiMAX band. Antenna II and antenna III have circular polarization property with measured axial ratio bandwidth of 440 MHz. The measured peak realized gain of antennas II and III is around 1.53‐2.9 dBi.  相似文献   

4.
A simple structure of broadband circularly polarized slot antenna based on coplanar waveguide (CPW) feeding is proposed in this article. To obtain circular polarization with a single feed, a transition from microstrip to CPW is designed to excite the even and odd modes of the CPW simultaneously. By adjusting the relative position and dimensions of the two circular patches introduced at the end of microstrip line and CPW, a 90° phase difference between two modes can be produced. When the two modes are coupled into the wide slot antenna, broadband circular polarization operation can be realized. The 10‐dB reflection coefficient bandwidth of the proposed antenna is 88.2% (2.49‐6.42 GHz) and 3‐dB AR bandwidth attains 50% (2.72‐4.49 GHz).  相似文献   

5.
A broadband high‐gain slot grid array antenna (SGAA) is proposed in this paper. Based on the electromagnetic complementarity principle, the metal elements in the traditional microstrip grid array antenna (GAA) are replaced by a wide slot element. Compared with the GAA, the proposed SGAA achieves broadband and high‐gain performance. In order to demonstrate this concept, a prototype with 9‐element SGAA is designed using wide slot radiation elements and fabricated on Rogers 5880 printed circuit board (PCB) substrates, which is fed by a 50 Ω coaxial probe. The measured and simulated results show a good agreement. The proposed SGAA achieves a measured peak gain of 14.8 dBi at 26.0 GHz, a 10‐dB impedance bandwidth from 22.2 to 28.5 GHz with a fractional bandwidth of 24.9%. These results indicate that the SGAA is with high performance and it is suitable for the fifth‐generation (5G) millimeter wave (mmW) wireless communication system.  相似文献   

6.
A new broadband circularly polarized (CP) square‐slot antenna with low axial ratios is proposed in this article. The antenna is comprised of an L‐shaped microstrip line with tapered section and a square‐slot ground plane with some stubs and slots, which are utilized as perturbations for the desirable antenna performance. By loading stubs and slots in the square‐slot ground plane, the 2‐dB axial ratio bandwidth (ARBW) and 10‐dB return loss bandwidth for the presented antenna can be markedly improved. The measured results show that its 2‐dB ARBW is 4.2 GHz (54.2% from 5.65 GHz to 9.85 GHz) and its 10‐dB return loss bandwidth is about 8.9 GHz (92.7% from 5.15 GHz to 14.05 GHz). The proposed antenna features compact structure and broad 2‐AR bandwidth which could completely cover the WLAN (5.725‐5.85 GHz) band. Therefore, the proposed antenna is suitable for circular polarization applications in C band.  相似文献   

7.
A substrate integrated waveguide (SIW) circularly polarized (CP) antenna with omnidirectional radiation in the azimuthal plane is proposed. The antenna consists of five identical end‐fire CP antenna elements in a pentagonal array configuration, which is loaded on a circular substrate. Each element contains an H‐plane horn antenna in SIW structure and a printed dipole antenna. Five parasitic curve elements are introduced to improve the omnidirectional property of the antenna. Combined with complementary dipoles theory and SIW technology, prototype antenna is designed, fabricated and measured. With a low profile of 0.024λ0, the antenna has a 10‐dB return‐loss impedance bandwidth of 4.08% (2.4~2.5 GHz) and a 3‐dB axial‐ratio (AR) bandwidth of 5.76% (2.36~2.50 GHz). The antenna works well in the 2.45 GHz ISM band, with good cross‐polarization and excellent omnidirectional property.  相似文献   

8.
In this study, a simple broadband circularly polarized (CP) printed monopole antenna for S/C‐band applications is proposed. The CP antenna is composed of a falcate‐shaped monopole with a right‐angle trapezoid stub, then wide impedance and axial ratio (AR) bandwidths are achieved. By placing one rectangular split‐ring resonator above the stub for generating upper CP mode, both of impedance and CP performances are further improved. The proposed antenna is fabricated on a FR4 substrate and measured. The measured ?10‐dB impedance bandwidth is 107%, ranging from 2.4‐7.9 GHz, and the measured 3‐dB AR bandwidth is 94% (2.4‐6.6 GHz), covering the entire wireless local area network (WLAN) and WiMAX bands.  相似文献   

9.
A novel broadband circularly polarized (CP) C‐shaped slot antenna fed by a coplanar waveguide is presented. The broadband CP operation can be achieved simply using a C‐shaped slot in the ground to produce orthogonal surface currents for left‐hand circular polarization. Using the semicircle‐shaped radiator patch, wide impedance bandwidth and broad axial‐ratio (AR) bandwidth can be obtained simultaneously. The measured results show that the proposed antenna can provide a 10‐dB impedance bandwidth of 105% from 2.78 to 8.92 GHz, and a 3‐dB AR bandwidth of 70.4% from 2.9 to 6.05 GHz. Finally, an antenna prototype with a reflector for unidirectional pattern applications is also developed. The proposed antenna has broader impedance and CP bandwidths but with a more compact size compared with the previous designs. © 2015 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:739–746, 2015.  相似文献   

10.
In this article, a new broadband circularly polarized (CP) microstrip patch antenna (MPA) with a sequential phase (SP) square‐loop feeding structure is proposed. The presented antenna is composed of a square‐loop feeding structure, four L‐shaped parasitic patches with L‐shaped slots, four parasitic square patches, and a corner‐truncated square patch. At first, a SP square‐loop is designed as a feeding structure. Then, four L‐shaped parasitic patches with L‐shaped slots are utilized to generate one CP mode by a capacitive coupled way. At last, four parasitic square patches and a corner‐truncated square patch are together placed above the SP feeding structure to broaden the circularly polarized bandwidth (CPBW). The presented antenna has a wide 3‐dB axial ratio bandwidth (ARBW) of 16.7% (5.4 GHz, 4.95‐5.85 GHz), and a wide 10‐dB return loss bandwidth of 25.5% (5.5 GHz, 4.8‐6.2 GHz). The proposed antenna features compact structure and broad 3‐AR bandwidth which could completely cover the WLAN (5.725‐5.85GHz) band. Therefore, the proposed antenna is suitable for circular polarization applications in C band.  相似文献   

11.
This article presents a novel compact circularly polarized multi‐slotted large bandwidth antenna for intelligent transportation system (ITS). The proposed antenna has a rectangular shaped multi‐slotted patch on upper side and a partial ground plane with multiple slots on lower side. The designed prototype antenna works from 22 to 29 GHz and is therefore applicable for ITS and weather forecasting applications. The design structure is distinct in terms of a low profile as well as simple structure, which is advantageous in mass production. Moreover, the multiple slots design antenna provides enhanced bandwidth. The axial ratio shows that the proposed antenna's behavior is circularly polarized with a compact size of 30 × 20 mm2. The measured reflection coefficient, gain, and the radiation pattern are consistent with simulated results. The proposed antenna has a reflection coefficient below ?20 dB and maximum gain of ~5 dBi at 24 GHz (ITS band).  相似文献   

12.
In this article, a novel wideband polarizer is presented, to convert the linear polarization of a directive antenna into circular polarization. This innovative polarizer is based on a 3D frequency selective surface (FSS) and consists of an array of 4×4 metal axial‐mode helices. The proposed broadband polarizer operates in the 28 to 31 GHz frequency band. To demonstrate the principle, the 3D FSS is applied to a linearly polarized Yagi‐Uda antenna operating in the same millimeter‐wave frequency band. The measured and simulated results, by integrating the proposed 3D polarizer in front of the antenna, show that an axial ratio smaller than 3 dB is obtained over a wide bandwidth with gain enhancement.  相似文献   

13.
This paper presents a broadband dual‐polarized omnidirectional antenna with a simple feeding structure. It consists of a monopolar patch element for vertically linear polarization (VP) and a circular printed‐dipole array for horizontally linear polarization (HP). The monopolar patch antenna is loaded with shorting vias and coupled ring in order to broaden the VP bandwidth, nevertheless keeping a low profile. The printed dipoles with integrated balun are arranged on a circular substrate and incorporated with a 1‐to‐4 power divider for achieving the broadband HP omnidirectional radiation. One of the key features is to replace a shorting‐via in the monopolar patch by the coaxial line of the HP element, allowing a simple configuration and not affecting the VP radiation. The final design with a profile of 0.28λmin has been fabricated and measured. The measurements result in an overlapped impedance bandwidth of 25.4% (2.2‐2.84 GHz) and port‐to‐port isolation of >33 dB. Also, the antenna achieves the peak gain values of 8.0 and 5.6 dBi for the VP and HP radiations, respectively.  相似文献   

14.
In this article, a new circularly polarized (CP) beam steering array antenna based on substrate‐integrated‐waveguide (SIW) is proposed for mm‐wave applications. To generate a wider half power beamwidth (HPBW) and reduce mutual coupling effect a radiation element relying on zeroth order resonance (ZOR) technique has been used which has a treatment such as electromagnetic band gap (EBG) structure to have a specific structure. The antenna element can operate in a bandwidth from 33.82 to 36.37 GHz and AR bandwidth from 34.32 to 35.94 GHz. Besides, the propose element has a HPBW wider than 103°, and a maximum gain of antenna is of 9.2 dBic. A 4 × 4 Butler matrix feed network based on SIW feeding technique is then designed. This feed network includes novel techniques in designing cross‐over and broadband phase shifter. The synthesis of proposed Butler matrix and ZOR elements lead to a four‐beam array antenna with circular polarization can cover a beam switching angles range more than 44° with a gain of 17.6 dBic.  相似文献   

15.
A high‐isolation dual‐polarized quad‐patch antenna fed by stacked substrate integrated waveguide (SIW) that is suitable for millimeter‐wave band is proposed in this paper. The antenna consists of a quad‐patch radiator, a two‐layer SIW feeding structure and two feeding ports for horizontal and vertical polarization. The two‐layer stacked SIW feeding structure achieves the high isolation between the two feeding ports (|S21| ≤ ?45 dB). Based on the proposed element, a 1 × 4 antenna array with a simple series‐fed network is also designed and investigated. A prototype working at the frequency band from 38 to 40 GHz is fabricated and tested. The results indicate that the proposed antenna has good radiation performance at 38 GHz that covers future 5G applications.  相似文献   

16.
In this article, a new low‐profile broadband circularly polarized antenna with a single‐layer metasurface is designed. The metasurface is composed of 4 × 4 rotated rectangle‐loops. Compared to single rotated rectangle, introducing inner‐cut rectangle slot can increase the design flexibilities by changing this slot size for wider circularly polarized operating bandwidth and reduce the size of the antenna in same frequency. The proposed antenna has the advantages of a wide 3‐dB axial ratio bandwidth from 5.4 to 6.05 GHz and an excellent 10‐dB impedance bandwidth from 5 to 6.05 GHz.  相似文献   

17.
A circularly polarized printed antenna using an asymmetric open‐slot is designed in this paper. The presented antenna consists of conducting ground plane with open wide‐slot, fed electromagnetically by a microstrip feedline. The slot and feedline are positioned at the edge of the ground plane and substrate, hence making the antenna asymmetric. The measured results show that the |S11| < ?10 dB impedance bandwidth is 125% (3.2‐14 GHz) and the broadband axial ratio bandwidth is 61% (3.2‐6 GHz). The antenna is very simple and has a small size of 25 mm × 25 mm, making it attractive for compact wireless WLAN, ISM, WiMAX, and C‐band applications.  相似文献   

18.
A Z‐shaped dipole antenna with parasitic strips is proposed for wideband and unidirectional circular polarization operation in this article. The dipole arms are bent into L‐shape for circular polarization, and printed balun is used to achieve good impedance matching. To further extend the axial ratio bandwidth, two parasitic strips are employed to introduce an additional band of circularly polarized operation at the high frequency. Measured results demonstrate that the proposed antenna has a 10‐dB impedance bandwidth of 63.3% (1.64‐3.16 GHz) and a 3‐dB axial ratio bandwidth of 51.1% (1.72‐2.9 GHz). Stable radiation patterns with gain around 9 dBic along +z‐axis are also observed.  相似文献   

19.
A halved falcate‐shape dual‐broadband circularly polarized printed monopole antenna is proposed. To generate the equal amplitude orthogonal modes, two halved falcate‐shaped antenna are used. Also, to provide the 90° phase difference between the two modes, three stubs are used in the ground plane of the antenna. The proposed antenna provides 22.6 (1.36–1.72 GHz) and 44.4% (5.25–8.25 GHz) 3 dB axial ratio bandwidth over the lower and upper bands, respectively. By adjusting the parameters of the antenna, the lower and upper band center frequencies can be tuned individually. The proposed antenna is fabricated, and results are compared with those of the simulation. © 2011 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2011.  相似文献   

20.
In this article, a geometrically simple, microstrip line‐fed planar monopole structure with slanting edge ground plane is designed to realize the dual‐band dual‐polarized operation. The proposed antenna consists of a rotated U‐shaped patch and an electromagnetically coupled L‐shaped parasitic radiating element. Owing to the combination of microstrip line‐fed radiating patch and a slanting‐edge rectangular ground plane on the opposite side of the substrate, the proposed dual‐band antenna can generate broad axial ratio bandwidth (ARBW) in the upper frequency band. The overall dimension of the prototype is only 32 × 32 × 1.6 mm3. The measured results validate that the proposed antenna has two operational frequency bands, 29.84% (1.54‐2.08 GHz) for linearly polarized radiation and 71.85% (3.96‐8.4 GHz) for circularly polarized radiation. Measured result shows that 3‐dB ARBW of the proposed antenna is 73.54% (3.80‐8.22 GHz) in the higher frequency band. It shows that the higher frequency band exhibits a left‐hand circularly polarized radiation in the boresight direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号