首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 15 毫秒
1.
In this article, a compact beam steering antenna configuration is presented. The proposed structure comprises a semicircular radially gradient metasurface (SCRGM) and a slot antenna. This metasurface (MS) with the dimensions of 3.17λ02 covers only half of the antenna aperture by placing it at a height of 0.16λ0 from the slot antenna. The SCRGM is made up of four different semicircular regions, which introduce progressive phase delay to the impinging spherical electromagnetic waves from the slot antenna. The placement of the SCRGM tilts the main beam by 30° away from the normal direction. Furthermore, in‐plane movement (rotation and translation) of the SCRGM facilitates beam steering in the elevation plane (E‐plane) with the total scanning range of 60°. Moreover, in simulation, two SCRGMs are placed at both sides of antenna aperture to independently control the beam directions in both upper and lower hemispheres of the slot antenna. Due to the symmetry of the slot antenna, only one SCRGM is tested during the measurement process and the same outcome is expected for the other MS. Considerably small volume (0.50λ03) of the structure revealed compact antenna configuration. Moreover, independent control of the beam directions in both of the hemispheres makes proposed antenna a suitable candidate for various applications.  相似文献   

2.
A single‐layer transmitting focusing gradient metasurface (F‐GMS) has been proposed that can realize high gain increment at 10 GHz. The unit of F‐GMS is composed of two identical structures placed on the top and bottom of one dielectric layer, which can have high transmitting efficiencies that over 0.8 and achieve [0, 2π] phase range in X‐band. The F‐GMS can convert the spherical waves into plane waves. A patch antenna working at 10 GHz is positioned as the focus of the proposed F‐GMS as the feed source to develop an ultrathin flat lens antenna system. It achieves a simulated gain of 19.6 dBi which is 12.9 dB greater than that of the single patch antenna at 10 GHz. Lastly, the F‐GMS and the patch antenna are manufactured and then measured in an anechoic chamber. A good agreement was demonstrated between experimental and simulated results.  相似文献   

3.
We propose an accurate method for designing three-dimensional (3D) large-aperture metamaterial slab lens antennas with gradient refractive index (GRIN). According to the geometric optics, Fermat principle, ray-tracing technique and impedance matching, the 3D GRIN slab lenses with large apertures are accurately designed and simulated. With the aid of the effective medium theory, an X-band and a Ku-band conical horn antennas loaded with the 3D GRIN slab lenses of 250-mm diameter are experimentally realized using the drilling-hole technique on the printed circuit boards (PCBs) as the unit cells of metamaterials. Compared to the traditional dielectric lens with the same aperture, the proposed antennas have very good performance with high directivity, and the gain is increased by 2 to 5 dB. Using the same method, we design and realize a huge-aperture GRIN lens in the X band with a diameter of 1000 mm, which is composed of nearly one millions of inhomogeneous unit cells of square-ring resonators and dielectric blocks with drilling holes. Due to the huge aperture size, the electromagnetic ray paths inside and outside of the GRIN lens are verified and optimized using the ray tracing technique. Measurement results show good performance of the proposed antenna with high directivity.  相似文献   

4.
This article presents the design of a planar high gain and wideband antenna using a negative refractive index multilayer superstrate in the X‐band. This meta‐antenna is composed of a four‐layer superstrate placed on a conventional patch antenna. The structure resonates at a frequency of 9.4 GHz. Each layer of the metamaterial superstrate consists of a 7 × 7 array of electric‐field‐coupled resonators, with a negative refractive index of 8.66 to 11.83 GHz. The number of layers and the separation of superstrate layers are simulated and optimized. This metamaterial lens has significantly increased the gain of the patch antenna to 17.1 dBi. Measurements and simulation results proved about 10 dB improvement of the gain.  相似文献   

5.
A novel 3D printed dielectric lens to enhance antenna gain parameters is presented. The lens is fabricated using a fused deposition method (FDM) which is a cost‐effective and an efficient 3D printing technique. Poly‐methyl methacrylate (PMMA) is used as a dielectric material due to its good RF properties. The thickness of the dielectric lens is 14 mm and provides a gain enhancement of up to 6.9 dBi over a wide frequency range. The dielectric lens is designed and computationally analyzed to demonstrate refractive index value close to zero. It has been shown that impedance‐matched near‐zero refractive index lens geometry eliminates strong reflections, and consequently enhances the antenna gain. A correlation is established between the individually, stacked unit cell layers and near‐zero refractive index cut‐off frequencies. The claim is substantiated through measured results using a broadband Vivaldi antenna. A gain enhancement of up to 6.9 dBi is recorded for the bandwidth from 13.5 to 24 GHz. An excellent correlation is reported between the measured and simulated results.  相似文献   

6.
For the first time, the rectangular dielectric resonator (DR) operating in higher‐order TE3δ1 mode is investigated and used as a magnetic‐dipole driver to design quasi‐Yagi antenna with high gain. For further enhancing the antenna gain, a near‐zero‐index (NZI) metamaterial (NZIM) is proposed instead of the traditional directors and put in the front of DR driver. It is a simple structure and composed of a set of the parallel metallic lines printed on a substrate along the end‐fire direction. Benefiting from the higher‐order mode operation of the DR and NZIM, the realized gain of the proposed antenna can reach 10.3 dBi, including the gain improvement of 2 dBi resulting from the employed NZIM. To verify the design concept, the prototype of quasi‐Yagi DR antenna with NZIM is fabricated and characterized. The measured results agree very well with the simulated results.  相似文献   

7.
太赫兹波频段介于毫米波和红外光之间,具有诸多优异特性,太赫兹天线更是太赫兹通信、雷达和成像等应用系统中的核心元器件。然而,目前报道的太赫兹天线均无法满足较大动态范围的相位扫描、高效率辐射和大偏转角度的需求。该文设计了 3 种石墨烯太赫兹天线,最小尺寸为 5 μm,并对其辐射效率和相位调控特性进行研究,进而提出具有双共振模式的石墨烯-金属太赫兹超表面天线,缓解了传统的基于单共振模式的相位动态调控范围和辐射效率之间的矛盾,实现了 0~360°的动态相位调控,且辐射效率高于 20%。该研究采用微加工工艺进行样品加工,通过改变栅极电压,在实验上获得了 1.03 THz 的太赫兹动态相位调控,反射率高于 23%,与仿真结果基本吻合。在此基础上,该文基于连续相位编码设计了石墨烯超表面相控阵天线,理论上实现了太赫兹波束在-25°~25°范围内的实时波束偏转。该文为解决超表面相控阵天线的相位动态调控范围小、辐射效率低等难题提供了新的研究思路。  相似文献   

8.
A method to significantly increase the gain and reduce the mutual coupling of microstrip multiple‐intput multiple‐output (MIMO) antenna based on metamaterial concept is presented. The μ‐negative and ε‐negative features of the proposed modified peace‐logo planar metamaterial (MPLPM) and two‐sided MPLPM (TSMPLPM) structures are calculated. The antenna structure consists of eight MPLPM slabs and two TSMPLPM, which are embedded in azimuth plane of a MIMO antenna vertically. The dimensions of MIMO antenna are 28 × 16 × 6.3 mm3 at 40 GHz. As a result, a compact MIMO antenna is simulated in comparison with primary microstrip structures. The corresponding return‐loss of the antenna is better than 10 dB over 34.5 to 45.5 GHz for Ka‐band applications. Good consent between the measured and simulated result is tacked. The maximum simulated gain of the structure is 15.5 dB at 40 GHz, creating a maximum gain improvement of 11.5 dB in comparison with a MIMO antenna without any metamaterial combinations. The value of the insertion‐loss (isolation) is 33 dB, which has improved by more than 25 dB compared to the conventional sample.  相似文献   

9.
In this paper, the application of the L‐slotted mushroom electromagnetic bandgap (LMEBG) structure to patch antenna and antenna array is investigated. A coaxial fed patch antenna and antenna array are designed at 5.8 GHz, center frequency for ISM band (5.725‐5.875 GHz). Two layers of LMEBG are placed around the patch to achieve a gain enhancement of 1.9 dB. Measured results show a bandwidth enhancement of 300 MHz with an additional resonant frequency at 5.6 GHz with 4.5 dB of gain. A 5 × 2 array of LMEBG is used to achieve a 2 dB mutual coupling reduction and 2 dB gain enhancement for a two‐element H‐coupled patch antenna array.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号