首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Grooves around aperture antennas are known to be instrumental in obtaining directive antenna patterns. The shapes of the grooves are often restricted to rectangular or triangular due to manufacturing difficulties in traditional metal machining, and because of this reason, the effect of groove shape on antenna performance is often overlooked. The aim of this study is to analyze different groove shapes with the help of additive manufacturing. Waveguide slot fed, dual cavity aperture antenna with grooves is designed and the effect of groove shapes on antenna performance is studied at Ku band. Two antennas with and without grooves are built using 3D printing technology. Measured antenna performance reveals 5 GHz bandwidth covering 10 to 15 GHz for Ku‐band satellite communications and part of the X‐band applications. Proposed antenna achieves 13.25 dBi peak gain at 14 GHz and the gain is better than 11.25 dBi over the entire Ku‐band uplink and downlink frequency bands.  相似文献   

2.
A planar substrate integrated waveguide (SIW) based cavity‐backed self‐triplexing slot antenna is proposed for X‐Ku band applications. The antenna comprises of the SIW cavity, radiating slots, and feeding networks. The radiating slots; that are etched on the upper metallic plane of the SIW, are backed up by the three radiated quarter cavities (QCs). The radiating slots in the respective QCs are of different lengths, excited by three separated orthogonal feed lines to resonate at three different frequencies as 11.01, 12.15, and 13.1 GHz. By fine‐tuning the antenna parameters, an intrinsic input port isolation of better than 26 dB is realized which helps in achieving the self‐triplexing property. The behaviors of individual cavity modes at three resonant frequencies are explained with the help of Z‐parameter. The proposed antenna layout is easy to integrate with the planar circuit. The proposed antenna is fabricated and measured results display a close concern with the simulated results. Moreover, a unidirectional radiation pattern and gain of 5.1, 5.54, and 6.12 dBi at resonant frequencies are realized.  相似文献   

3.
In this article, a high‐gain and dual‐polarized antenna with UWB operation is proposed. The antenna is composed of two tapered dipoles as radiating elements, which are arranged orthogonally and fed perpendicularly to achieve polarization diversity. A metallic cavity reflector is placed behind the radiator for high gain radiation entire the operating bandwidth. To validate the design method, an antenna prototype is designed, fabricated, and measured. The measured results demonstrate that the proposed design has good performance with |S11| ≤ ?10 dB and isolation ≥20 dB over a frequency band 3.2‐8.8 GHz, equivalently to about 93.3%. In addition, unidirectional radiation pattern and broadside gain of from 8.1 to 11.8 dBi are obtained across the operating bandwidth.  相似文献   

4.
A novel single‐fed circularly polarized wideband, compact and lightweight microstrip patch antenna (MPA) is proposed. The antenna is designed in a simple two‐phase procedure to achieve wideband and circular polarization. In the first phase, an off‐centered L‐shaped feeding arrangement is employed to obtain wideband (|S11| < ?10 dB) over 10.6 GHz to 14.7 GHz with an improved peak gain of 5.25 dBi. In the second phase, the radiating patch is symmetrically truncated and two modified‐parasitic patches are added to ensure <3 dB axial ratio over 11.4 GHz to 12.8 GHz. A prototype has been fabricated and the measured results show close agreement with the simulation. The proposed antenna is suitable for fixed satellite and broadcast satellite communication in Ku‐band range.  相似文献   

5.
A K‐band (18‐27 GHz) antenna array is presented in this article. By deposing the quasi‐pyramidal‐horn upon a print circuit board (PCB), a traveling‐wave quasi‐pyramidal‐horn antenna is formed. Parasitic rings are introduced to decrease the quality factor for an extended bandwidth. The antenna element demonstrates impedance bandwidth 18.6 to 23.3 GHz. The gain is 10.3 dBi at 20.4 GHz with a stable radiation pattern. The impedance bandwidth of a 2 × 2 array is 18.3 to 22.7 GHz, with a maximum gain of 15.2 dBi at 20.4 GHz. The simulated and measured radiation patterns on E‐ and H‐planes at 20.4 GHz agree well. Taking advantage of the 3D printing technology, the quasi‐pyramidal horn is fabricated by selective laser melting using aluminum alloy for time‐saving and process simplicity. The proposed design highlights the hybrid usage of PCB and metallic 3D printing technology in fabricating microwave devices. It is a capable candidate for wireless communication.  相似文献   

6.
A novel triple‐band antenna element by etching parasitic slot on ground plane is presented. A three‐element antenna system for WLAN MIMO communications is fabricated by using the proposed antenna element. The triple‐band antenna element is designed for the WLAN standard frequency ranges (2.4‐2.485, 5.15‐5.35, and 5.475‐5.725 GHz). The three identical antenna elements are rotationally symmetric on the substrate, isolated by using metal‐vias cavity. The measured average peak gain within the operational bandwidth is about 2.7 dBi. The isolation between the antenna elements can achieve better than 17 dB at the lower band (2.25‐2.65 GHz), while more than 32 dB at the higher bands (5.20‐5.35 and 5.47‐5.73 GHz) is obtained.  相似文献   

7.
A compact wideband circularly polarized (CP) horn antenna with slot‐coupled feeding structure at Ku band for satellite communication is devised. The proposed design is based on a square aperture horn antenna with two orthogonal ridges, which is fed by nonuniform curved slot along the diagonal of the horn on the bottom cavity. And in order to improve the impedance matching, a staircase typed ridge is connected the feeding probe as a matching network. Moreover, two orthogonal ridges are excited with a tapered slot coupled by the staircase ridges via feeding probe. Wideband CP performance is achieved with an overall physical dimension of 9 mm × 9 mm × 14 mm (0.045λ0 × 0.045λ0 × 0.07λ0 at frequency of 15 GHz). It is experimentally demonstrated that the proposed antenna achieves: a wide 10‐dB return loss bandwidth of about 2.4 GHz, a 3‐dB axial ratio bandwidth of 1 GHz, and a peak gain of 6.5 dBi.  相似文献   

8.
The article presents a microstrip patch (MSA) fed high gain circularly polarized metasurface cavity (CP‐MSC) antenna using a planar progressively‐phased‐reflector and a transmissive linear to circular polarization conversion metascreen. The bottom metasurface reflector consists of a remodeled Jerusalem cross to obtain 2π reflection phase variation. Linear to circular polarization conversion is achieved by a hexagonal ring based meta‐element with high transmission and bellow 3 dB axial ratio from 9.5 to 10.5 GHz. Simulated and measured results of assembled CP‐MSC antenna with MSA are in good agreement. The gain of the proposed cavity antenna with 10 and 10.5 GHz MSA are 14.9 and 16.3 dBi, respectively. Below 3 dB AR throughout the operating band denotes significant circular polarization performance of the proposed antenna.  相似文献   

9.
In this article, investigation has been carried out on Y‐shaped patch antenna to produce triple‐band for wireless applications. The corrugated Y‐shaped patch antenna is considered to produce low reflection coefficient with high gain at the triple‐bands. The corrugated Y‐shaped patch antenna is resonates at 4.19 GHz (4‐4.43 GHz), 8.79 GHz (8.61‐9.01 GHz), 13 GHz (12.6‐13.6 GHz) frequencies with reflection coefficient of ?29.26 dB, ?34.87 dB, ?40.37 dB and gain 5.01 dBi, 5.42 dBi, 7.46 dBi, respectively. The proposed corrugated Y‐shaped patch antenna works three frequency bands at radio communications, satellite communications, and aeronautical radio navigation applications, respectively.  相似文献   

10.
In this paper, two Dielectric Resonator Antenna (DRA) models fed through a pair of diagonally coupled asymmetric L‐slots are incorporated on the ground plane of size 44 X 44 mm2 with a strip line feed underneath the substrate are presented. The proposed DRA‐1 is a triband antenna, resonates at 5.2GHz, 6.7GHz and 9.85GHz with a gain of 5.6dBi, 5.66dBi and 9.8dBi respectively. The bandwidth offered at Circularly Polarized (CP) band by DRA‐1 is 1.95 GHz (6‐7.95 GHz). The proposed second model DRA‐2 operates at 5 GHz, 6.4 GHz, 7.8 GHz and 10.3 GHz with a peak gain of 5.5dBi, 5dBi, 6.1dBi and 7.8dBi respectively. The quad‐band DRA‐2 offers two CP bands with bandwidths of 1.3GHz (7‐8.3 GHz) and 1.2 GHz (9.8‐11 GHz). The multiple operating bands of the proposed DRAs are appropriate for different wireless applications such as WLAN, C‐Band and X‐Band range of frequencies.  相似文献   

11.
A K/Ka‐band (22‐33 GHz) high‐gain aperture shared multibeam parabolic reflector antenna is proposed. It performs a two‐dimensional beam scanning from a shared single parabolic reflector by introducing off‐focal feeds. The feed array is placed on and off the focal of the parabolic reflector. Traditionally, the feed blockage has a great impact on the performance of the antenna, which reduces the gain and increases the sidelobe level. The purpose of this paper is to suppress the negative effects of feed blockage by using hybrid material processing method. Both dielectric and metallic 3D printing technologies are used for antenna fabrication. The parabolic reflector antenna is printed by selective laser melting using aluminum alloy. The feed array and the supporting structures are printed by stereolithography apparatus in resin to control the blockage. The method helps to suppress the sidelobe level from ?10 to ?15 dB and to enhance gain by up to 2.3 dBi. The reflection coefficient is less than ?10 dB, while the coupling coefficient between the ports is less than ?20 dB over the entire designed band. At 31.5 GHz, the simulated maximum gain of the antenna are 30.7, 29.1, and 29.7 dBi, when different port separately excites. Multiple beams at ±15° and 0° are observed on both E‐ and H‐planes. Besides, it also verifies the possibility to use dielectric and metallic 3D printing technologies in hybrid for microwave device fabrication.  相似文献   

12.
In this study, the realization of a Ku‐band feed system for reflector antenna in satellite communication systems is presented using 3D printing and conductive paint methods. The system includes a corrugated conical horn antenna designed to operate at 10.5 to 18.5 GHz and an H‐plane waveguide diplexer to operate at 10.7 to 12.75 GHz and 17.3 to 18.4 GHz in receive (RX) and transmit (TX) bands, respectively. In the manufacturing of the structures, fused deposition modeling (FDM) technology and polylactic acid material are processed for 3D printing, where nickel and silver conductive‐based paints are used for coating purpose. The measurement results of the feed system are found to be in good agreement with simulations that the combined (nickel‐coated antenna and silver‐coated diplexer) structure has return loss of more than 10 dB and high gain performance of 12 to 17 dBi within the RX and TX bands of 10.7 to 12.75 GHz and 17.4 to 18.8 GHz, respectively; while rejection (isolation) level between TX and RX ports is higher than 60 dB. The complex structure containing several detailed shapes inside shows that this low‐cost production technique as compared to high‐cost CNC‐based metallic production technology can be used for the prototype structures or proof‐of‐concept type studies of Ku‐band systems.  相似文献   

13.
A 6–18 GHz wideband cavity‐backed log‐periodic‐slot end‐fire antenna with vertical polarization for conformal application is presented. The log‐periodic folded slots and parasitic slots with 10 slot elements are applied to cover 6–18 GHz frequency band and the log‐periodic metallic cavity is placed under each slot element to keep wideband performance and prevent the effects of large metallic carrier on radiation patterns. The ground plane etched with log‐periodic slots is reversed and touched directly to the backed cavity and a dielectric cover is added to the antenna, to further improve the antenna performance. Meanwhile, a broadband microstrip‐coplanar waveguide transition is inserted in the antenna for measurements. With these designs, the proposed antenna shows good impedance matching (|S11|<27 dB) and end‐fire gain (>4 dBi) performances in 6–18 GHz. The proposed antenna also keeps low‐profile and easy flush‐mounted characteristic which is suitable for conformal applications of high speed moving carriers.  相似文献   

14.
In this article, a V‐band printed log‐periodic dipole array (PLPDA) antenna with high gain is proposed. The antenna prototype is designed, simulated, fabricated, and tested. Simulation results show that this antenna can operate from 42 to 82 GHz with a fractional impedance bandwidth of 64.5% covering the whole V‐band (50–75 GHz). The antenna has a measured impedance matching bandwidth that starts from 42 to beyond 65 GHz with good agreement between the experimental and simulated results. At 50 and 65 GHz, the antenna has a measured gain of 10.45 and 10.28 dBi, respectively, with a gain variation of 2.6 dBi across the measured frequency range. The antenna prototype exhibits also stable radiation patterns over the operating band. It achieves side‐lobe suppression better than 17.26 dB in the H‐plane and better than 8.95 dB in the E‐plane, respectively. In addition, the cross‐polarization component is 18.5 dB lower than the copolarization with front‐to‐back ratio lower than 24.1 dB in both E‐ and H‐planes across the desired frequency range. Based on a comparison of performance among the reported work in the literature, we can say that the proposed PLPDA antenna is a proper candidate to be used in many applications at V‐band frequency. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:185–193, 2015.  相似文献   

15.
A three‐element quasi Yagi‐Uda antenna array with printed metamaterial surface generated from the array of uniplanar capacitively loaded loop (CLL) unit‐cells printed on the substrate operating in the band 25‐30 GHz is proposed. The metamaterial surface is configured to provide a high‐refractive index to tilt the electromagnetic (EM) beam from the two dipole antennas placed opposite to each other. The metamaterial region focuses the rays from the dipole antenna and hence increases the gain of the individual antennas by about 5 dBi. The antenna elements are printed on a 10 mil substrate with a center to center separation of about 0.5 λ 0 at 28 GHz. The three‐element antenna covers 25‐30 GHz band with measured return loss of 10 dB and isolation greater than 15 dB between all the three ports. The measured gain of about 11 dBi is achieved for all the antenna elements. The three antenna elements radiate in three different directions and cover a radiation scan angle of 64°.  相似文献   

16.
This article deals with the design of a broadband cavity‐backed microstrip‐fed wide‐slot antenna array for L‐band applications. For verification purpose, a sample 1 × 4‐element antenna array has been designed, manufactured and tested. Experimental results have shown satisfactory agreement with the simulation. The proposed antenna array exhibits a measured impedance bandwidth of 1.4 GHz (90%) with frequency of 0.85 to 2.25 GHz and the gain is higher than 11 dBi. The designed antenna has small size and low weight and can be fabricated using a low‐cost fabrication process for easy integration with RF circuits and microwave components. This work is useful for some radar applications and radio frequency identification systems.  相似文献   

17.
A planar and compact substrate integrated waveguide (SIW) cavity backed antenna and a 2 × 2 multi‐input multi‐output (MIMO) antenna are presented in this study. The proposed antenna is fed by a grounded coplanar waveguide (GCPW) to SIW type transition and planned to be used for millimeter‐wave (mm‐wave) fifth generation (5G) wireless communications that operates at 28, 38, 45, and 60 GHz frequency bands. Moreover, the measured impedance bandwidth (|S11| ≤ ? 10 dB ) of the antenna covers 27.55 to 29.36, 37.41 to 38.5, 44.14 to 46.19, and 57.57 to 62.32 GHz bands and confirms the quad‐band characteristic. Omni‐directional radiation characteristics are observed in the far‐field radiation pattern measurements of the antenna over the entire operating frequency. The reported antenna is compact in size (9.7 × 13.3 × 0.6 mm3) and the gain values at each resonance frequency are measured as 3.26, 3.28, 3.34, and 4.51 dBi, respectively. Furthermore, the MIMO antenna performance is evaluated in terms of isolation, envelope correlation coefficient and diversity gain.  相似文献   

18.
This article presents a dual‐band dual‐polarized end‐loaded quasi‐open‐sleeve dipole antenna (ELQOSDA) with stable radiation patterns for WLAN applications. The ELQOSDA consists of an end‐loaded planar dipole and two parasitic strips. Dual polarization is obtained by two ELQOSDAs perpendicularly crossing, with some parts overlapped. The unidirectional stable radiation patterns are achieved by adding a square resonance ring between the ground plane and antenna. The ring has little influence on antenna performance at the lower frequency, but improves the coupling currents between the ground and antenna at the upper frequency. As a result, satisfactory dual band and broadside radiation performance is obtained. For demonstration, the proposed antenna is implemented. Measured dual‐band 10‐dB impedance bandwidths are 9.4% (2.33‐2.56 GHz) and 33.5% (4.23‐5.93 GHz) in the lower and upper bands, covering the entire WLAN 2.4/5.2/5.8‐GHz bands. Moreover, the measured antenna has a 6.7‐8.1 dBi broadside gain and stable radiation patterns over the whole operating band.  相似文献   

19.
Modified Sierpinski gasket fractal patch antenna for earth exploration satellite services has been proposed in this article. The proposed antenna is designed up to third iterative fractal geometry on the FR4 substrate having dielectric constant of 4.4 with height of 0.8 mm. The proposed design shows multiband characteristics at 2.8, 6.1, 7.96, 16, and 17 GHz frequencies. The maximum gain of the proposed design is 9.6 dBi has been achieved in Ku‐band. The resonating performance characteristics and radiation characteristics of the final iteration are investigated using simulator and experimentally to verify the results of the proposed design. The simulated and measured performance parameters show quite resemblance. Further, proposed design has been simulated on the micro‐machined high resistive silicon substrate which causes the improvement in gain and efficiency. Micro‐machined fractal antenna is compatible with monolithic microwave integrated circuits (MMICs).  相似文献   

20.
A beam scanning Fabry‐Pérot cavity antenna (FPCA) for 28 GHz‐band is presented in this article. The proposed antenna consists of a slot‐fed patch antenna and several layers of perforated superstrates with different dielectric constant. The beam of the antenna can be controlled by moving the superstrate over the antenna. By increasing the offset between the feeding antenna and the superstrate, a larger tilt angle can be obtained. The size of the antenna is 0.95λ0 × 0.95λ0 × 0.48λ0 at 28.5 GHz. The results show the proposed antenna achieves an impedance bandwidth (S11 < ‐10 dB) of 10.5% (27.2‐30.2 GHz), and the beam can be scanned from 0° to 14° in the yoz‐plane with the offset changed from 0 mm to 2 mm. The gain of the antenna is enhanced by 5 dBi in comparison with the feeding antenna without the superstrate, which ranges from 10.91 to 11.53 dBi with the different offset. The proposed antenna is fabricated and shows a good agreement with simulated result.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号