首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a compact novel simple design of ultra‐wide bandpass filter with high out of band attenuation is presented. The filter configuration is based on combining an ultra‐wide band composite right/left‐handed (CRLH) band pass filter (BPF) with simple uni‐planar configuration of complementary split ring resonator (UP‐CSRR). By integrating two UP‐CSRR cells, the ultra‐wideband CRLH filter roll‐off and wide stopband attenuation are enhanced. The filter has 3 dB cutoff frequencies at 3.1 GHz and 10.6 GHz with insertion loss equals 0.7 dB in average and minimum and maximum values of 0.48 dB and 1.05 dB, respectively over the filter passband. Within the passband. The transition band attenuation from 3 dB to 20 dB is achieved within the frequency band 1.9 GHz to 3.1 GHz (48%) at lower cutoff and the frequency band 10.6 GHz to 11.4 GHz (7%) at upper stopband. Moreover, the filter has a wide stopband attenuation >20 dB in frequencies 11 GHz to 13.6 GHz (21%) and ends with 3 dB cutoff frequency at 14.8 GHz. Furthermore, the designed filter size is very compact (23 × 12 mm2) whose length is only about 0.17 λg at 6.85 GHz. The filter performance is examined using circuit modeling, full‐wave simulations, and experimental measurements with good matching between all of them.  相似文献   

2.
A millimeter‐wave ultrawideband two‐way switch filter module is presented in this article. The switch filter module covers whole Ka‐band (26–40 GHz), and is composed of two wideband band‐pass filters and two monolithic microwave integrated circuit (MMIC) single pole two throw (SP2T) switches. One filter is realized using E‐plane iris waveguide band‐pass filter, and another is realized by a novel 11‐pole three‐line microstrip structure band‐pass filter. Compared with the traditional three‐line filter, the proposed three‐line filter not only retains virtues of the traditional three‐line filter, but also resolves drawbacks of it, which include discontinuities between adjacent sections, many parameters of design, and no effective matching circuits at input/output ports. The developed switch filter module is fabricated using hybrid integrated technology, which has a size of 51 × 26 × 9.8 mm3, and interconnections between MMICs and microstrip are established by bond wires. The fabricated switch filter module exhibits excellent performances: for two different states, the measured insertion loss and return loss are all better than 7 and 10 dB in each pass‐band, respectively. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:305–310, 2015.  相似文献   

3.
This article introduces a new design and analysis of a compact reconfigurable bandpass/lowpass filter based on compact negative refractive index metamaterial transmission line. The filter equivalent circuit has been designed as a cascade of three cells of bisected‐Π/Π configuration. The reconfigurable function was achieved using inserted switches in ON and OFF modes within the cells. The filter works as bandpass when all switches are in ON condition and for lowpass switch‐1 is in OFF and switch‐2 in ON condition. The low pass filter has 3‐dB cutoff frequency of 3.25 GHz with a selectivity of 170 dB/GHz. The bandpass filter is cantered at 3.65 GHz and has a well‐matched pass band with insertion loss of 0.2 dB and wide stop band with two transmission zeros (TZs). The frequency positions of TZs are independently varying with series and shunt loading elements. The filter performance has been validated through circuit model, electromagnetic simulation, and experimental measurements. The electrical size of bandpass filter excluding feed line is 0.22 λg × 0.20 λg (12 × 11 mm2) at center frequency of 3.65 GHz and for lowpass filter is 0.19 λg × 0.18 λg at cutoff frequency of 3.25 GHz. The filter can be applied in suitable for different wireless applications.  相似文献   

4.
In this article, a novel dual‐band circularly polarized (CP) dielectric resonator antenna (DRA) for millimeter‐wave (MMW) band is presented. The rectangular dielectric resonator with layered truncated corners is excited by a microstrip‐coupled cross‐slot. CP radiations in the lower band are realized by utilizing two quasi‐TE111 modes operating at 21.7 GHz and 23.8 GHz, while CP radiations in the upper band are obtained by exciting a quasi‐TE113 mode at 28.2 GHz. The dual‐band DRA is fabricated and measured. Due to the higher order mode, the average gain of the DRA in the upper band is about 3 dB higher than that in the lower band. The measured impedance bandwidths (|S11| < ?10 dB) are 17.0% (20.5‐24.3 GHz) and 15.2% (26.1‐30.4 GHz), while the measured axial ratio (AR) bandwidths (AR < 3 dB) are 12.8% (21.2‐24.1 GHz) and 5% (27.4‐28.8 GHz). In addition, the peak gain values are 5 and 8 dBic.  相似文献   

5.
A dipole‐type millimeter‐wave (mm‐wave) antenna with directional radiation characteristics is presented. A radiating patch structure composed of a dipole‐type radiation patch and a rectangular‐shaped parasitic patch are initially investigated to achieve a wider bandwidth. To further improve the operating bandwidth and to realize a directional radiation characteristic, this radiating patch structure is top‐loaded above a conducting cavity‐backed ground structure, which has a low profile (thickness of 3 mm). The measured results show that the proposed mm‐wave antenna can achieve a wide 10‐dB bandwidth of 51.3% (29.6‐50.0 GHz) and stable gain across the desired frequency range. Furthermore, good directional characteristics over the entire mm‐wave frequency band with a compact antenna size of 0.64λ40GHz × 0.91λ40GHz × 0.43λ40GHz are also realized. Hence, it is suitable for many small size wireless mm‐wave systems.  相似文献   

6.
In this article, a Doherty power amplifier (DPA) with improved band‐pass auxiliary impedance inverter is proposed for broadband operation. As a wideband DPA solution, the output matching networks of main and auxiliary devices are designed to achieve proper impedance matching at back‐off and peak power by employing a two‐point matching technique without the λ/4 impedance transformer. It is found that the modified band‐pass network has broader bandwidth feature and is compact in form from the comparison with some different topologies of matching networks. So, it is more suitable to be the auxiliary transformer to achieve the broadband configuration of DPA. For validation purpose, a Doherty power amplifier based on two commercially available gallium nitride HEMT (Cree CGH 40010F) devices was designed, fabricated, and measured. Under the drive of continuous wave (CW) signal, the measurement results show that the DPA has a 6‐dB back‐off efficiency of 35% to 48% and a saturated efficiency of 44% to 64% within the frequency band from 1.50 GHz to 2.35 GHz, which is about 44% fractional bandwidth.  相似文献   

7.
A metasurface‐based low‐profile crossed dipole antenna with wide circularly polarized bandwidth for 2.45 GHz ISM band wireless communications is proposed and fabricated in this article. Consisting of four slit‐loaded rectangular patches, the double‐sided printing crossed dipoles are fed by a pair of vacant‐quarter printed rings which circularly polarized (CP) radiation could be generated. With slits loaded, by properly combining the fundamental mode of the two inverted L‐shaped dipole, the slot mode and extra resonance generated by the AMC surface, a wideband circularly polarized operation can be obtained. After optimization, the final design with an overall size of 0.44λ0 × 0.44λ0 × 0.1448λ0 at 2.4 GHz had measured a 31.6% (2–2.75 GHz) impedance bandwidth and 3 dB axial ratio bandwidths of measured were 23.2% (2.1–2.65 GHz), respectively. In addition, the antenna performed a small gain variation (7.0–7.5 dBic) and a front‐to‐back ratio (FBR) of over 25 dB across the whole CP region.  相似文献   

8.
In this article, a novel compact band‐pass filter (BPF) with sharp cutoffs and a wide stop‐band is presented. The BPF is basically designed by cutting a modified complementary split‐ring resonator (CSRR) from the ground of two separated microstrip feed lines and has a 71% fractional bandwidth from 4.1 to 9 GHz. Because of the high insertion loss, the designed filter should be packed in a metallic cavity that has undesirable resonances in the stop‐band of the BPF. For eliminating cavity resonances, an evolutionary optimization technique based on changing the pixels of the CSRR defected ground structure is used. A prototype of the final structure obtained from the optimization technique is fabricated. The measurement results show that the optimized filter have a pass band from 4 to 8 GHz with a rejection better than 15 dB from 4 to 15 GHz. The designed filters have compact dimensions of 12 × 12 × 0.787 mm3. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:544–548, 2014.  相似文献   

9.
An ultra‐wideband compact bandpass filter (BPF) with configurable stopband by tuning transmission zeroes is proposed in this paper. The ultra‐wideband bandpass response is based on a diamond‐shape resonator consisting of a pair of broadside coupled diamond‐shape microstrip lines, within which a diamond shape defected ground structure (DGS) is etched in the middle. Flexible transmission zeros realized by open and short stubs can be easily adjusted to improve band selectivity and harmonic suppression. Measurement result shows that the dedicated device has a 3 dB fractional bandwidth of 148% (0.94‐6.36 GHz) with 20 dB rejection stopband from 6.87 to 9.7 GHz (77.5%) which agrees good with the simulate performance. The overall size of the proposed BPF is 0.27 λg × 0.23 λg.  相似文献   

10.
A coplanar waveguide (CPW) fed printed compact monopole antenna with five band rejection features is presented. Wide bandwidth was achieved by beveling the lower part and adding a modified ellipse on the upper portion of the patch. An inverted circular arc, single circular split ring resonator (SRR) with wide opening and two symmetrical circular single SRRs were embedded for obtaining three stop‐band characteristics. Two symmetrical slits were inculcated in the ground forming defected ground structure (DGS) to get another stop‐band characteristic. Two concentric rectangular modified SRRs were etched to obtain a higher frequency stop‐band feature. The proposed antenna was designed, fabricated, and experimentally tested for the validation of results. The overall dimensions of the proposed antenna were 29 mm × 24 mm × 1.6 mm. The measured impedance bandwidth of the antenna was 2.87 to 13.3 GHz at | S11 |< ? 10 dB. The measured results show that the proposed antenna has five band notches centred at 3.96, 4.35, 5.7, 8.54, and 9.95 GHz to reject WiMAX band (3.65‐4.04 GHz), ARN band (4.29‐5.18 GHz), WLAN band (5.5‐6.9GHz), ITU‐8 band (7.37‐8.87), and amateur radio band (9.2‐10.3 GHz) respectively. The proposed antenna maintains omnidirectional radiation pattern in H‐Plane and dumbbell‐shape radiation pattern in E‐plane. Further, stable gain over the whole UWB except at notched frequency bands was reported.  相似文献   

11.
In this article, a wideband and spurious‐suppressed differential bandpass filter based on strip‐loaded slot‐line structure is presented. By means of the differential microstrip‐slot‐line‐microstrip transition, the proposed filter has a wideband bandpass filtering response. Simultaneously, the utilization of the strip‐loaded slot‐line extends its upper stop‐band. The proposed bandpass filter has wider upper‐stopband, wideband bandpass response, and intrinsic high common‐mode (CM) suppression. To verify the design concept, one filter example has been designed, fabricated, and measured. It has a differential‐mode (DM) 3‐dB fractional bandwidth of 157% with a low 0.82 dB minimum insertion loss. What's more, it shows a very wide 20 dB DM stop‐band bandwidth of 6.5 f0d. The experienced results are in good agreement with the theoretical and simulated results.  相似文献   

12.
A novel zeroth‐order resonator (ZOR) meta‐material (MTM) antenna with dual‐band is suggested using compound right/left handed transmission line as MTM. In this article, suggested antenna consists of patch through series gap, two meander line inductors, and two circular stubs. The MTM antenna is compact in size which shows dual‐band properties with first band centered at 2.47 GHz (2.05‐2.89 GHz) and second band is centered at 5.9 GHz (3.70‐8.10 GHz) with impedance bandwidth of (S11 < ? 10 dB) 34.69% and 72.45%, respectively. At ZOR mode (2.35 GHz), the suggested antenna has overall dimension of 0.197λo × 0.07λo × 0.011λo with gain of 1.65 dB for ZOR band and 3.35 dB for first positive order resonator band which covers the applications like Bluetooth (2.4 GHZ), TV/Radio/Data (3.700‐6.425 GHz), WLAN (5‐5.16 GHz), C band frequencies (5.15‐5.35, 5.47‐5.725, or 5.725‐5.875 GHz) and satellite communication (7.25‐7.9 GHz). The radiation patterns of suggested structure are steady during the operating band for which sample antenna has been fabricated and confirmed experimentally. It exhibits novel omnidirectional radiation characteristics in phi = 0° plane with lower cross‐polarization values.  相似文献   

13.
A coupled‐line band‐pass filter (BPF) with T‐shaped stub structure is presented. Five transmission poles within the passband and eight deep transmission zeros (TZs) from 0 to 2f0 (f0 denotes filter's center frequency) are realized through input impedance calculations. With the simple T‐shaped structure, the positions of six TZs can be appropriately adjusted to achieve high frequency selectivity and stopband rejection. For demonstration, a BPF prototype centered at 2.05 GHz is designed and fabricated, whose measured rejection levels are of over 45.5 dB at lower stopband and better than 19.5 dB at upper stopband. The simulation and measurement results are in good agreement, which validates the design idea.  相似文献   

14.
A coplanar waveguide‐fed metamaterial antenna is presented for ultra‐wideband (UWB) applications. The proposed antenna is designed with single unit‐cell composite right/left‐handed transmission line (CRLH‐TL) loaded with a split‐ring resonator (SRR). The UWB characteristic is obtained by merging the zeroth‐order resonance of CRLH‐TL with two additional resonances due to the ground plane and SRR respectively. Subsequently, a partial reactive impedance surface is embedded on the rear side of the proposed antenna to enhance the realized gain without affecting the UWB response. The overall size of the antenna is 0.241λo x 0.267λo x 0.013λo (28.8 x 32 x 1.6 mm3), where λo is the free space wavelength at 2.51 GHz. The measured results indicate –10 dB fractional bandwidth of 139.19% (2.51‐14 GHz) with realized gains of 2.3, 4.6, and 6 dBi at the resonant frequencies 4, 7.84, and 10.29 GHz respectively. The measured peak realized gain is 6.6 dBi at 10.6 GHz. The radiation efficiency is above 63.85% for the entire UWB range with a peak value of 86.84%. A fairly stable group delay with variation within 1 ns is obtained throughout the operating frequency band. A good agreement has been observed between the measured and simulated results.  相似文献   

15.
This review article provides an extensive literature survey on the research progress of dielectric resonator antenna (DRA) at millimeter‐wave frequency band that includes concepts of DRAs, their empirical formulae and design methodologies for different shaped DRAs at 60 GHz frequency band. The different shaped DRAs such as cylindrical, rectangular, hexagonal, and octagonal at 60 GHz are designed, simulated and analyzed using CST microwave studio solver. The ?10 dB impedance bandwidth of cylindrical, rectangular, hexagonal, and octagonal DRAs are 52.7 to 62.8 GHz, 57 to 62.2 GHz, 55.8 to 64.2 GHz, and 54.2 to 63.5 GHz, respectively. The idea behind getting broad impedance bandwidth is due to use of double‐layer substrate with different permittivity (εr1 = 4 and εr2 = 11.9). Empirical formulae are deduced for hexagonal and octagonal DRA, by studying the analogy of dielectric resonator geometry. Consequently, the mode of different shaped DRAs, that is, HEM111 and TE111 are investigated by the electric field and magnetic field distribution. With these analysis, a comprehensive research review over the period of the last two decades is carried for investigating various techniques, targeted to realized gain, circular polarization, and impedance bandwidth. Along with these analysis the state‐of‐the‐art at different shaped DRAs at mm‐wave frequency band are also reported.  相似文献   

16.
A high‐isolation dual‐polarized quad‐patch antenna fed by stacked substrate integrated waveguide (SIW) that is suitable for millimeter‐wave band is proposed in this paper. The antenna consists of a quad‐patch radiator, a two‐layer SIW feeding structure and two feeding ports for horizontal and vertical polarization. The two‐layer stacked SIW feeding structure achieves the high isolation between the two feeding ports (|S21| ≤ ?45 dB). Based on the proposed element, a 1 × 4 antenna array with a simple series‐fed network is also designed and investigated. A prototype working at the frequency band from 38 to 40 GHz is fabricated and tested. The results indicate that the proposed antenna has good radiation performance at 38 GHz that covers future 5G applications.  相似文献   

17.
The effect of finite‐size recessed ground on characteristic features of a microstrip transmission line is investigated and verified experimentally on alumina substrate of height 0.127 mm with εr = 9.8 at 60 GHz. A measured characteristic impedance of 238 Ω, effective dielectric constant of 3.09, and attenuation constant of 3.4 Np/m is achieved by using a recessed ground of dimensions (width × depth) 4.5 mm × 0.95 mm, below a 50‐Ω (on conventional ground plane) microstrip line. The effect of recessed ground on lumped equivalent circuit elements of microstrip line discontinuities including series‐gap, open‐end, and step discontinuities is also studied. To show the usefulness of recessed ground microstrip line, a prototype of fifth‐order Chebyshev‐type recessed ground end‐coupled band‐pass filter is designed and fabricated at 60 GHz. The filter exhibits measured insertion loss lower than 2.2 dB and return loss better than 13 dB over 3‐dB passband of 6% centered at 60 GHz. The measured results show good consistency with simulated results and confirm the usefulness of recessed ground plane microstrip line.  相似文献   

18.
A wide‐angle scanning circularly polarized (CP) leaky‐wave antenna (LWA) with suppressed side‐lobe levels (SLLs) is proposed, which can be a good candidate for future radar and wireless communication systems. The LWA consists of 12 cross slotted elliptical patch elements, which are fed by a microstrip spoof surface plasmon polariton (SSPP) line. Two fundamental modes of the patch array with two orthogonal polarizations can be excited by the electromagnetic coupling between the array and the SSPP line. By optimizing the elliptical eccentricity e and etching cross slots on the elliptical patch array, a 90° phase difference is introduced, and then, the CP radiation is realized. A tapered aperture field distribution is also realized by adjusting coupling intensities between the patch elements and the SSPP line, which is beneficial to reduce the SLLs. The electrical size of the LWA is 1.29λ0 × 6.02λ0 × 0.08λ0, where λ0 is air wavelength at 12.9 GHz (broadside direction). Both the simulated and measured results indicate that the CP operating band is 12.0 to 15.0 GHz. The proposed CP LWA scans continuously from ?14° to 38°. In the whole operating band, the axial ratios are less than 3 dB, and the SLLs are less than ?20 dB as well.  相似文献   

19.
A compact two‐element multiple‐input‐multiple‐output (MIMO) antenna system with improved impedance matching and isolation is presented for future sub‐6 GHz 5G applications. The two identical tapered microstrip line fed modified rhombus‐shaped radiating elements are placed in the same orientation at a compact substrate area of 0.24λ0 × 0.42λ0 (where, λ0 at 3.6 GHz) on a shared rectangular ground. A remodeled T‐shaped ground stub is placed between a pair of radiating element to achieve improved impedance bandwidth and isolation. Further, a split U‐shaped stub connected to center of each radiating element to achieve the desired resonant frequency of 3.6 GHz. The proposed antenna covers a ?10 dB operating band of 3.34 to 3.87 GHz (530 MHz) with more than 20 dB isolation between a pair of elements. MIMO performances are also analyzed and experimentally validated. The measured performances of a prototype are found in good agreement with simulated performances. Further, the simulation study is carried out to see the effect of housing and extended ground plane on two‐element MIMO antenna for practical application. An idea of realization of 12‐element MIMO is also studied using the proposed two‐element MIMO antenna.  相似文献   

20.
An elliptical function low‐pass filter (LPF) with ultra wide stopband and sharp cutoff frequency is proposed. This filter is composed of symmetrical cascaded modified hairpin resonators and U‐shaped resonators. The transition band is from 1 to 1.21 GHz with ?3 and ?20 dB, respectively. For this filter, the return loss is better than 17 dB in 80% of passband width, where the insertion loss is less than 0.3 dB. The band‐stop rejection is greater than 20 dB from 1.21 to 26.35 GHz and 40 dB from 1.35 to 12.5 GHz. To validate the design and analysis, the proposed LPF has been designed and fabricated on a 20 mil thick RO4003 substrate with a relative dielectric constant 3.38 and loss tangent of 0.0021. The filter is evaluated by experiment and simulation with a good agreement. © 2013 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:314–321, 2014.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号