首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper proposes a framework of fault estimation observer design in finite‐frequency domain for discrete‐time systems. First, under the multiconstrained idea, a full‐order fault estimation observer in finite‐frequency domain is designed to achieve fault estimation by using the generalized Kalman–Yakubovich–Popov lemma to reduce conservatism generated by the entire frequency domain. Then, a reduced‐order fault estimation observer is constructed, which results in a new fault estimator to realize fault estimation using current output information. Furthermore, by introducing slack variables, improved results on full‐order fault estimation observer and reduced‐order fault estimation observer design with finite‐frequency specifications are obtained such that different Lyapunov matrices can be separately designed for each constraint. Simulation results are presented to illustrate the advantages of the theoretic results obtained. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
This paper focuses on the observer design for nonlinear discrete‐time systems by means of nonlinear observer canonical form. At first, sufficient and necessary conditions are obtained for a class of autonomous nonlinear discrete‐time systems to be immersible into higher dimensional observer canonical form. Then a method called dynamic observer error linearization is developed. By introducing a dynamic auxiliary system, the augmented system is shown to be locally equivalent to the generalized observer form, whose nonlinear terms contain auxiliary states and output of the system. A constructive algorithm is also provided to obtain the state coordinate transformation. These results are an extension of their counterparts of nonlinear continuous‐time systems to nonlinear discrete‐time systems (Syst. Control Lett. 1986; 7 :133–142; SIAM. J. Control Optim. 2003; 41 :1756–1778; Int. J. Control 2004; 77 :723–734; Automatica 2006; 42 :321–328; IEEE Trans. Automat. Control 2007; 52 :83–88; IEEE Trans. Automat. Control 2004; 49 :1746–1750; Automatica 2006; 42 :2195–2200; IEEE Trans. Automat. Control 1996; 41 :598–603; Syst. Control Lett. 1997; 31 :115–128). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
This article is concerned with the dissipative control problem for discrete‐time nonlinear Markovian jump systems subject to both discrete and distributed time‐delays. The purpose is to design a state feedback controller that is capable of guaranteeing the required closed‐loop stability and dissipativity performances simultaneously. By resorting to Lyapunov functional methodology and completing square technique, sufficient conditions are established for the existence of the desired state feedback controller in terms of certain Hamilton‐Jacobi inequalities (HJIs). Within the provided framework, the required controller parameters can be obtained by solving the corresponding HJIs. Finally, two numerical simulation examples are presented to demonstrate the correctness and effectiveness of the developed control paradigm.  相似文献   

4.
Interval observers are constructed for discrete‐time systems. First, time‐invariant interval observers are proposed for a family of nonlinear systems. Second, it is shown that, for any time‐invariant exponentially stable discrete‐time linear system with additive disturbances, time‐varying exponentially stable discrete‐time interval observers can be constructed. The latter result relies on the design of time‐varying changes of coordinates, which transform a linear system into a nonnegative one. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
We consider general discrete‐time nonlinear systems (of arbitrary nonlinear growth) with time‐varying input delays and design an explicit predictor feedback controller to compensate the input delay. Such results have been achieved in continuous time, but only under the restriction that the delay rate is bounded by unity, which ensures that the input signal flow does not get reversed, namely, that old inputs are not felt multiple times by the plant (because on such subsequent occasions, the control input acts as a disturbance). For discrete‐time systems, an analogous restriction would be that the input delay is non‐increasing. In this work, we do not impose such a restriction. We provide a design and a global stability analysis that allow the input delay to be arbitrary (containing intervals of increase, decrease, or stagnation) over an arbitrarily long finite period of time. Unlike in the continuous‐time case, the predictor feedback law in the discrete‐time case is explicit. We specialize the result to linear time‐invariant systems and provide an explicit estimate of the exponential decay rate. Carefully constructed examples are provided to illustrate the design and analytical challenges. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
This paper focuses on the analysis and the design of event‐triggering scheme for discrete‐time systems. Both static event‐triggering scheme (SETS) and adaptive event‐triggering scheme (AETS) are presented for discrete‐time nonlinear and linear systems. What makes AETS different from SETS is that an auxiliary dynamic variable satisfying a certain difference equation is incorporated into the event‐triggering condition. The sufficient conditions of asymptotic stability of the closed‐loop event‐triggered control systems under both two triggering schemes are given. Especially, for the linear systems case, the minimum time between two consecutive control updates is discussed. Also, the quantitative relation among the system parameters, the preselected triggering parameters in AETS, and a quadratic performance index are established. Finally, the effectiveness and respective advantage of the proposed event‐triggering schemes are illustrated on a practical example. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
This paper mainly studies the locally/globally asymptotic stability and stabilization in probability for nonlinear discrete‐time stochastic systems. Firstly, for more general stochastic difference systems, two very useful results on locally and globally asymptotic stability in probability are obtained, which can be viewed as the discrete versions of continuous‐time Itô systems. Then, for a class of quasi‐linear discrete‐time stochastic control systems, both state‐ and output‐feedback asymptotic stabilization are studied, for which, sufficient conditions are presented in terms of linear matrix inequalities. Two simulation examples are given to illustrate the effectiveness of our main results.  相似文献   

8.
This paper is concerned with the design of an LMI‐based discrete‐time nonlinear state observer for an anaerobic digestion model. In presence of disturbances in both the dynamics of the model and the output measurement signals, the proposed observer robustly estimates all state variables including bacteria concentrations, which are costly and difficult to measure. In the goal to increase applicability of the proposed observer for other systems, we present the theoretical results in a general way. First, due to the use of Young's inequality in a convenient way, we get new sufficient conditions, expressed in terms of bilinear matrix inequalities (BMIs), ensuring the criterion. Then, to render the BMIs convex, two alternative solutions are proposed, where both lead to linear matrix inequality (LMI) conditions. It is shown analytically and numerically that these two solutions provide less conservative LMI conditions compared to the existing methods in the literature. To validate the proposed methodology on a real‐world model, an application to an anaerobic digestion model is given.  相似文献   

9.
This paper extends the results developed in (Ciccarella et al., 1993) and presents a robust observer for discrete time nonlinear systems. A simple, robust and easy to implement algorithm is given whose convergence properties are guaranteed for autonomous and forced systems. Combined parameter and state estimation is made for a numerical example, which compares the robust observer to the observer given in (Ciccarella et al., 1993).  相似文献   

10.
Preserving Order Observers provide an estimation that is always above or below the true variable, and in the absence of uncertainties/perturbations, the estimation converges asymptotically to the true value of the variable. In this paper, we propose a novel methodology to design preserving order observers for a class of nonlinear systems in the nominal case or when perturbations/uncertainties are present. This objective is achieved by combining two important systemic properties: dissipativity and cooperativity. Dissipativity is used to guarantee the convergence of the estimation error dynamics, whereas cooperativity of the error dynamics assures the order‐preserving properties of the observer. The use of dissipativity for observer design offers a big flexibility in the class of nonlinearities that can be considered while keeping the design simple: it leads in many situations to the solution of a linear matrix inequality (LMI). Cooperativity of the observer leads to an LMI. When both properties are considered simultaneously, the design of the observer can be reduced, in most cases, to the solution of both a bilinear matrix inequality and an LMI. Because a couple of preserving order observers, one above and one below, provide an interval observer, the proposed methodology unifies several interval observers design methods. The design methodology has been validated experimentally in a three‐tanks system, and it has also been tested numerically and compared with an example from the literature.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, a high‐order internal model (HOIM)‐based iterative learning control (ILC) scheme is proposed for discrete‐time nonlinear systems to tackle the tracking problem under iteration‐varying desired trajectories. By incorporating the HOIM that is utilized to describe the variation of desired trajectories in the iteration domain into the ILC design, it is shown that the system output can converge to the desired trajectory along the iteration axis within arbitrarily small error. Furthermore, the learning property in the presence of state disturbances and output noise is discussed under HOIM‐based ILC with an integrator in the iteration axis. Two simulation examples are given to demonstrate the effectiveness of the proposed control method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, we will establish a framework that can convert the robust output regulation problem for discrete‐time nonlinear systems into a robust stabilization problem for an appropriately augmented system consisting of the given plant and a specific dynamic system called internal model. We then apply this framework to solve the local robust output regulation problem for a general class of discrete‐time nonlinear systems. The results of this paper gives a discrete‐time counterpart of the recent results on the continuous‐time robust output regulation problem. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
This paper is concerned with the reachable set estimation problem for discrete‐time linear systems with multiple constant delays and bounded peak inputs. The objective is to check whether there exists a bounded set that contains all the system states under zero initial conditions. First, delay‐dependent conditions for the solvability of the addressed problem are derived by employing a novel Lyapunov–Krasovskii functional. The obtained conditions are expressed in terms of matrix inequalities, which are linear when only one scalar variable is fixed. On the basis of these conditions, an ellipsoid containing the reachable set of the considered system is obtained. An approach for determining the smallest ellipsoid is also provided. Second, the approach and results developed in the first stage are generalized to the case of systems with polytopic parameter uncertainties, and delay‐dependent conditions are given in the form of relaxed matrix inequalities. Finally, two numerical examples are provided to demonstrate the effectiveness of the proposed methods. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, an observer‐based control approach is proposed for uncertain stochastic nonlinear discrete‐time systems with input constraints. The widely used extended Kalman filter (EKF) is well known to be inadequate for estimating the states of uncertain nonlinear dynamical systems with strong nonlinearities especially if the time horizon of the estimation process is relatively long. Instead, a modified version of the EKF with improved stability and robustness is proposed for estimating the states of such systems. A constrained observer‐based controller is then developed using the state‐dependent Riccati equation approach. Rigorous analysis of the stability of the developed stochastically controlled system is presented. The developed approach is applied to control the performance of a synchronous generator connected to an infinite bus and chaos in permanent magnet synchronous motor. Simulation results of the synchronous generator show that the estimated states resulting from the proposed estimator are stable, whereas those resulting from the EKF diverge. Moreover, satisfactory performance is achieved by applying the developed observer‐based control strategy on the two practical problems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
This paper is concerned with the problem of positive observer synthesis for positive systems with both interval parameter uncertainties and time delay. Conventional observers may no longer be applicable for such kind of systems due to the positivity constraint on the observers, and they only provide an estimate of the system state in an asymptotic way. A pair of positive observers with state‐bounding feature is proposed to estimate the state of positive systems at all times in this paper. A necessary and sufficient condition for the existence of desired observers is first established, and the observer matrices can be obtained easily through the solutions of a set of linear matrix inequalities (LMIs). Then, to reduce the error signal between the system state and its estimates, an iterative LMI algorithm is developed to compute the optimized state‐bounding observer matrices. Finally, a numerical example is presented to show the effectiveness and applicability of the theoretical results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
This paper presents a steady‐state robust state estimator for a class of uncertain discrete‐time linear systems with norm‐bounded uncertainty. It is shown that if the system satisfies some particular structural conditions and if the uncertainty has a specific structure, the gain of the robust estimator (which assures a guaranteed cost) can be calculated using a formula only involving the original system matrices. Among the conditions the system has to satisfy, the strongest one relies on a minimum phase argument. It is also shown that under the assumptions considered, the robust estimator is in fact the Kalman filter for the nominal system. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
This paper aims to study the problem of input‐to‐state stability (ISS) for nonlinear discrete impulsive systems with time delays. Razumikhin‐type theorems, which guarantee ISS – asymptotically ISS and exponentially ISS – for the discrete impulsive ones with external disturbance inputs, are established. As applications, numerical examples are given to illustrate the effectiveness of the theoretical results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
This paper is concerned with the design of robust non‐minimal order H filters for uncertain discrete‐time linear systems. The uncertainty is assumed to be time‐invariant and to belong to a polytope. The novelty is that a convex filtering design procedure with Linear Matrix Inequality constraints is proposed to synthesize guaranteed‐cost filters with order greater than the order of the system. An H‐norm bound for the transfer‐function from the system input to the filtering error is adopted as performance criterion. The non‐minimal order filters proposed generalize other existing filters with augmented structures from the literature and can provide better performance. An extension to the problem of robust smoothing is proposed as well. The procedure is illustrated by a numerical example. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper the notions of non‐uniform in time robust global asymptotic output stability (RGAOS) and input‐to‐output stability (IOS) for discrete‐time systems are studied. Characterizations as well as links between these notions are provided. Particularly, it is shown that a discrete‐time system with continuous dynamics satisfies the non‐uniform in time IOS property if and only if the corresponding unforced system is non‐uniformly in time RGAOS. Necessary and sufficient conditions for the solvability of the robust output feedback stabilization (ROFS) problem are also given. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, controller design for discrete‐time bilinear systems is investigated by using sum of squares programming methods and quadratic Lyapunov functions. The class of rational polynomial controllers is considered, and necessary conditions on the degree of controller polynomials for quadratic stability are derived. Next, a scalarized version of the Schur complement is proposed. For controller design, the Lyapunov difference inequality is converted to a sum of squares problem, and an optimization problem is proposed to design a controller, which maximizes the region of quadratic stability of the bilinear system. Input constraints can also be accounted for. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号