首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, hybrid fuels consisting of rapeseed oil/diesel blend, 1% aqueous ethanol and a surfactant (oleic acid/1-butanol mixture) were prepared and tested as a fuel in a direct injection (DI) diesel engine. The main fuel properties such as the density, viscosity and lower heating value (LHV) of these fuels were measured, and the engine performance, combustion and exhaust emissions were investigated and compared with that of diesel fuel. The experimental results showed that the viscosity and density of the hybrid fuels were decreased and close to that of diesel fuel with the increase of ethanol volume fraction up to 30%. The start of combustion was later than that of diesel fuel and the peak cylinder pressure, peak pressure rise rate and peak heat release rate were higher than those of diesel fuel. The brake specific fuel consumption (BSFC) of hybrid fuels was increased with the volume fraction of ethanol and higher than that of diesel. The brake specific energy consumption (BSEC) was almost identical for all test fuels. The smoke emissions were lower than those for diesel fuel at high engine loads, the NOx emissions were almost similar to those of diesel fuel, but CO and HC emissions were higher, especially at low engine loads.  相似文献   

2.
G.R. KannanR. Anand 《Energy》2011,36(3):1680-1687
Experiments were conducted on a single cylinder direct injection diesel engine using diesel, biodiesel and biodiesel-diesel-ethanol (diestrol) water micro emulsion fuels to investigate the performance, emission and combustion characteristics of the engine under different load conditions at a constant speed of 1500 rpm. The results indicated that biodiesel and micro emulsion fuels had a higher brake specific fuel consumption (BSFC) than that of diesel. A slight improvement in the brake specific energy consumption (BSEC) was observed for micro emulsion fuels. The brake thermal efficiency of biodiesel and micro emulsion fuels were comparable to that of diesel. The emission characteristics like carbon monoxide (CO), carbon dioxide (CO2), unburnt hydrocarbon (UHC), nitric oxide (NO) and smoke emissions for biodiesel and micro emulsion fuels were lower than diesel fuel at all load conditions. The cylinder gas pressure of micro emulsion fuels was lower than diesel at low loads but it became almost identical to diesel at medium and full load conditions. The heat release rate for micro emulsion fuels was higher than biodiesel and diesel fuels for all loads. Biodiesel showed shorter ignition delay for the entire load range and the longer ignition delay observed for micro emulsion fuels.  相似文献   

3.
In the present work, a normal diesel engine was modified to work in a dual fuel (DF) mode with turpentine and diesel as primary and pilot fuels, respectively. The resulting homogeneous mixture was compressed to a temperature below the self‐ignition point. The pilot fuel was injected through the standard injection system and initiated the combustion in the primary‐fuel air mixture. The primary fuel (turpentine) has supplied most of the heat energy. Usually, in all DF engines, low‐cetane fuels are preferred as a primary fuel. Therefore, at higher loads these fuels start knocking and deteriorating in performances. Usually, DF operators suppress the knock by adding more pilot‐fuel quantity. But in the present work, a minimum pilot‐fuel quantity was maintained constant throughout the test and a required quantity of diluent (water) was added into the combustion at the time of knocking. The advantages of this method of knock suppression are restoration of performance at full load, maintenance of the same pilot quantity through the load range and reduction in the fuel consumption at full load. From the results, it was found that all performance and emission parameters of turpentine, except volumetric efficiency, are better than those of diesel fuel. The emissions like CO, UBHC are higher than those of the diesel baseline (DBL) and around 40–45% reduction of smoke was observed at 100% of full load. The major pollutant of diesel engine, NOx, was found to be equal to that of DBL. From the above experiment, it was proved that approximately 80% replacement of diesel with turpentine is quite possible. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
In the current global energy scenario, fossil fuels face challenges with regards to exorbitant demand, environmental hazards and escalating costs. In this regard, the technical community is in quest for alternative resources. In this context, biodiesel fuel is potentially considered as alternative fuels for compression ignition engines. Hence, in this current investigation, biodiesel and biodiesel emulsions are prepared from a vegetable oil and further subjected for the blending with potential additives such as CNT (Carbon Nanotubes) and DEE (Di-Ethyl Ether) to improve the working attributes of the diesel engine. The entire investigation was carried out in five stages. In the first stage, both pure diesel and biodiesel (derived from jatropha oil) fuels were tested in the diesel engine to obtain baseline readings. In the second stage, water–biodiesel emulsion fuel was prepared in the proportion of 91% of biodiesel, 5% of water and 4% of emulsifiers (by volume). In the third stage, 50 ppm of CNT, 50 ml of DEE and combined mixture of CNT+DEE (50 ppm CNT+50 ml DEE) were mixed with the water–biodiesel emulsion fuel separately to prepare the CNT and DEE blended water–biodiesel emulsion fuels respectively. In fourth stage, the prepared emulsion fuels were subjected to stability investigations. In the fifth stage, all the prepared stable emulsion fuels were subjected for experimental testing in a diesel engine. It was observed that the CNT and DEE blended biodiesel emulsion fuels reflected better performance, emission and combustion attributes than that of pure diesel and biodiesel. At the full load, the brake thermal efficiency, NO and smoke emission of CNT+DEE fuels was 28.8%, 895 ppm and 36%, whereas it was 25.2%, 1340 ppm and 71% for pure diesel respectively. It was also observed that on adding CNT and DEE with the biodiesel emulsion fuels, the ignition delay was shortened and henceforth, the additive blended biodiesel emulsion fuels exhibited higher brake thermal efficiency and reduced emissions (NO, smoke) than that of pure diesel and biodiesel.  相似文献   

5.
The novelty of this research work deals with green synthesized nanoadditives (5% of graphene, carbon nanotubes, and carbon black), oxygenated additives (5% of n-butanol, n-heptane, and n-pentanol), and then the test fuels are prepared by blending of 20% of soybean biodiesel and 70%, 80%, and 100% of premium diesel. The experimental outcomes revealed that the Nickel Chromium Aluminum (NiCrAl-120 micron), partially stabilized zirconia, and titanium dioxide ceramic composites at about 400 microns achieve the thermal barrier coat of low heat rejection (LHR) engine parts by the air-plasma spray method. Compared with Blend B, green synthesized carbon black (5%), premium diesel (70%), and n-pentanol (5%) mixed soybean biodiesel (20%) fuel (Blend E) tested on the LHR engine achieved 4.90% higher brake thermal efficiency and 25.31% lower brake-specific fuel consumption at peak load owing to the presence of an oxygenated agent (n-pentanol) in the fuel blend, which minimizes carbon deposition. The carbon monoxide, hydrocarbon, NOx, and smoke emissions were reduced by 25.58%, 29.41%, 5.06%, and 7.75% when compared to Blend B at peak load. Then, the in-cylinder pressure and heat release rate were found to be 4.52% and 8.87% higher for Blend E at peak load compared to Blend B. This was because the mix of oxygenated additive and carbon black bio-based nanofuels made the combustion process go faster. These fuel blends were tested on LHR diesel engines at various load conditions.  相似文献   

6.
Ethanol has been considered as an alternative fuel for diesel engines. On the other hand, injection timing is a major parameter that sensitively affects the engine performance and emissions. Therefore, in this study, the influence of advanced injection timing on the engine performance and exhaust emissions of a single cylinder, naturally aspirated, four stroke, direct injection diesel engine has been experimentally investigated when using ethanol‐blended diesel fuel from 0 to 15% with an increment of 5%. The original injection timing of the engine is 27° crank angle (CA) before top dead center (BTDC). The tests were conducted at three different injection timings (27, 30 and 33° CA BTDC) for 30 Nm constant load at 1800 rpm. The experimental results showed that brake‐specific energy consumption (BSEC), brake‐specific fuel consumption (BSFC), NOx and CO2 emissions increased as brake‐thermal efficiency (BTE), smoke, CO and HC emissions decreased with increasing amount of ethanol in the fuel mixture. Comparing the results with those of original injection timing, NOx emissions increased and smoke, HC and CO emissions decreased for all test fuels at the advanced injection timings. For BSEC, BSFC and BTE, advanced injection timings gave negative results for all test conditions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Biomass derived fuels are preferred as alternate fuels for I.C Engines due to their abundant availability and renewable nature. Fuels such as methanol and ethanol have proved to be suitable alternate fuels in the transport sector. In the present work the performance, emission and combustion characteristics of a single cylinder, constant speed, direct injection diesel engine using orange oil as an alternate fuel were studied and the results are compared with the standard diesel fuel operation. Results indicated that the brake thermal efficiency was higher compared to diesel throughout the load spectra. Carbon monoxide (CO) and hydrocarbon (HC) emissions were lower and oxides of nitrogen (NOx) were higher compared to diesel operation. Peak pressure and heat release rate were found to be higher for orange oil compared to diesel fuel operation.  相似文献   

8.
Diesel engines provide the major power source for transportation in the world and contribute to the prosperity of the worldwide economy. However, recent concerns over the environment, increasing fuel prices and the scarcity of fuel supplies have promoted considerable interest in searching for alternatives to petroleum based fuels. Based on this background, the main purpose of this investigation is to evaluate clove stem oil (CSO) as an alternative fuel for diesel engines. To this end, an experimental investigation was performed on a four-stroke, four-cylinder water-cooled direct injection diesel engine to study the performance and emissions of an engine operated using the CSO–diesel blended fuels. The effects of the CSO–diesel blended fuels on the engine brake thermal efficiency, brake specific fuel consumption (BSFC), specific energy consumption (SEC), exhaust gas temperatures and exhaust emissions were investigated. The experimental results reveal that the engine brake thermal efficiency and BSFC of the CSO–diesel blended fuels were higher than the pure diesel fuel while at the same time they exhibited a lower SEC than the latter over the entire engine load range. The variations in exhaust gas temperatures between the tested fuels were significant only at medium speed operating conditions. Furthermore, the HC emissions were lower for the CSO–diesel blended fuels than the pure diesel fuel whereas the NOx emissions were increased remarkably when the engine was fuelled with the 50% CSO–diesel blended fuel.  相似文献   

9.
A novel nanofuel is formulated using aluminum oxide (alumina) nanoparticles (AONs) in neat plastic oil (PO). A light‐duty compression‐ignition engine is used in the present investigation to analyze the effect of a 100% plastic nanofuel under different concentrations of nanoparticle on performance, combustion, and emission characteristics. The modified fuels used for conducting the experiment were formulated by mixing PO with 100, 150, and 200 mg/L of AON. The results of the physical and chemical properties of neat PO were significantly improved, in addition to AON. The nanofuels exhibited lower in‐cylinder pressure, delay period, and combustion duration than that of neat PO operation. The performance analysis revealed a 10.3% increase in thermal efficiency for PAN200 nanofuel compared with PO and it was almost the same as that of conventional diesel fuel. The emission levels of HC, CO, and smoke for PO‐based nanofuels were reduced significantly at all brake mean effective pressure values, whereas the reduction in the NOX emission was only marginal. At full load, the emission of smoke, HC and CO of the PAN200 nanofuel were lower than the diesel operation. Overall, the engine fueled with nanofuel exhibited superior characteristics compared to that of neat PO operation.  相似文献   

10.
In this study, waste tyre was pyrolyzed at different conditions such as temperature, heating rate and inert purging gas (N2) flow rate. Pyrolysis parameters were optimized. Optimum parameters were determined. The main objective of this study was to investigate combustion, performance and emissions of diesel and waste tyre oil fuel blend. Experimental investigation was performed in a single cylinder, direct injection, air cooled diesel engine at maximum engine torque speed of 2200 rpm and four different engine load including 3.75, 7.5, 11.25 and 15 Nm. The effects of waste tyre oil on combustion characteristics such as cylinder pressure, heat release rate, ignition delay (ID), combustion duration, engine performance were investigated. In-cylinder pressure and heat release rate increased with waste tyre oil fuel blend (W10) with the increase of engine load. In addition, ID was shortened with the increase of engine load for test fuels but it increased with the addition of waste tyre oil. Lower imep values were obtained because of the lower calorific value of waste tyre oil fuels. Maximum thermal efficiencies were determined as 28.27% and %25.12 with diesel and W10 respectively at 11.25 Nm engine load. When test results were examined, it was seen that waste tyre oil highly affected combustion characteristics, performance and emissions.  相似文献   

11.
The utilization of renewable gaseous fuels in the diesel engine has gained significant interest in recent years due to its clean-burning nature and higher availability. In this study, hydrogen-rich reformed biogas was used as a gaseous fuel in a common rail diesel engine with diesel as pilot fuel. The hydrogen-rich reformed gas was synthesized through dry-oxidative reforming. The experimentations were performed in the load range from 6 to 24 N m with two different flow rates of gaseous fuel (0.5 and 1.5 kg/h) at a constant speed of 1800 RPM. The effects on engine performance parameters (brake thermal efficiency, brake specific energy consumption, and brake specific diesel consumption), combustion parameters (rate of pressure rise and maximum heat release rate) and emission parameters (Unburnt hydrocarbons, nitrogen oxides, carbon monoxide, and carbon dioxide) were assessed. The induction of gaseous fuel led to an increase in brake thermal efficiency by 10.5%, reduction in brake specific energy consumption by 13.6%, and a reduction of 26.4% in brake specific diesel consumption with a flow rate of 0.5 kg/h when compared to diesel-only mode at 24 N m load. The HC, NOX and CO2 emissions were reduced by 18.2%, 7.4% and 1.4% with a flow rate of 0.5 kg/h when compared to diesel-only mode at 24 N m load due to lower availability of carbon content in the combustible mixture. The utilization of renewable fuel like hydrogen-rich reformed biogas has great potential for overcoming the issue related to both biogas and hydrogen in diesel engines. Moreover, the higher diesel substitution also demonstrates the potential for cost-saving and fossil fuel conservation.  相似文献   

12.
Biodiesel either in neat form or as a mixture with diesel fuel is widely investigated to solve the twin problem of depletion of fossil fuels and environmental degradation. The main objective of the present study is to compare performance, emission and combustion characteristics of biodiesel derived from non edible Jatropha oil in a dual fuel diesel engine with base line results of diesel fuel. The performance parameters evaluated were: brake thermal efficiency, brake specific fuel consumption, power output. As a part of combustion study, in-cylinder pressure, rate of pressure rise and heat release rates were evaluated. The emission parameters such as carbon monoxide, carbon dioxide, un-burnt hydrocarbon, oxides of nitrogen and smoke opacity with the different fuels were also measured and compared with base line results. The different properties of Jatropha oil after transestrification were within acceptable limits of standards as set by many countries. The brake thermal efficiency of Jatropha methyl ester and its blends with diesel were lower than diesel and brake specific energy consumption was found to be higher. However, HC, CO and CO2 and smoke were found to be lower with Jatropha biodiesel fuel. NOx emissions on Jatropha biodiesel and its blend were higher than Diesel. The results from the experiments suggest that biodiesel derived from non edible oil like Jatropha could be a good substitute to diesel fuel in diesel engine in the near future as far as decentralized energy production is concerned. In view of comparable engine performance and reduction in most of the engine emissions, it can be concluded and biodiesel derived from Jatropha and its blends could be used in a conventional diesel engine without any modification.  相似文献   

13.
Stringent emission norms and rapid depletion of petroleum resources have resulted in a continuous effort to search for alternative fuels. Hydrogen is one of the best alternatives for conventional fuels. Hydrogen has both the benefits and limitation to be used as a fuel in an automotive engine system. In the present investigation, hydrogen was injected into the intake manifold by using a hydrogen gas injector and diesel was introduced in the conventional, mode which also acts as an ignition source for hydrogen combustion. The flow rate of hydrogen was set at 5.5 l min?1 at all the load conditions. The injection timing was kept constant at top dead center (TDC) and injection duration was adjusted to find the optimized injection condition. Experiments were conducted on a single cylinder, four stroke, water‐cooled, direct injection diesel engine coupled to an electrical generator. At 75% load the maximum brake thermal efficiency for hydrogen operation at injection timing of TDC and with injection duration of 30°CA is 25.66% compared with 21.59% for diesel. The oxides of nitrogen (NOX) emission are 21.7 g kWh?1 for hydrogen compared with diesel of 17.9 g k Wh?1. Smoke emissions reduced to 1 Bosch smoke number (BSN) in hydrogen compared with diesel of 2.2 BSN. Hydrogen operation in the dual fuel mode with diesel exhibits a better performance and reduction in emissions compared with diesel in the entire load spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
According to the literature, there is in lack of a comprehensive study to compare the combustion, performance and emissions of a diesel engine using diesel, biodiesel and ethanol fuels (DBE) in the blended mode and fumigation mode under various engine speeds. This study was conducted to fill this knowledge gap by comparing the effect of blended, fumigation and combined fumigation + blended (F + B) modes on the combustion, performance and emissions of a diesel engine under a constant engine load (50% of full torque) with five engine speeds ranging from 1400 rpm to 2200 rpm. A constant overall fuel composition of 80% diesel, 5% biodiesel and 15% ethanol, by volume % (D80B5E15), was utilized to provide the same fuel for comparing the three fueling modes.According to the average results of five engine speeds, the blended mode has higher peak heat release rate (HRR), ignition delay (ID), brake thermal efficiency (BTE), brake specific nitrogen monoxide (BSNO) and brake specific nitrogen oxides (BSNOX), but lower duration of combustion (DOC), brake specific fuel consumption (BSFC), brake specific carbon dioxide (BSCO2), brake specific carbon monoxide (BSCO), brake specific hydrocarbon (BSHC), brake specific nitrogen dioxide (BSNO2), brake specific particulate matter (BSPM), total number concentration (TNC) and geometric mean diameter (GMD), and similar peak in-cylinder pressure compared to the fumigation mode. In addition, for almost all the parameters, results obtained in the F + B mode are in between those of the blended and fumigation modes. In regard to the effect of engine speed, the results reveal that the increase in engine speed causes reduction in peak in-cylinder pressure, BTE, BSHC, BSNOX, BSNO and BSNO2, but increase in peak HRR, ID, DOC, BSFC, BSCO2, BSPM and TNC, and similar BSCO and GMD for almost all the tested fueling modes. It can be inferred that the blended mode is the suitable fueling mode, compared with the fumigation mode, under the operating conditions investigated in this study.  相似文献   

15.
根据本文第一部分提出的含氧燃料设计思想与方法,以碳酸二甲脂(DMC)为例,研究了较宽比例范围内的DMC柴油混合燃料对柴油机的燃烧与排放特性的影响。在一台高速柴油机上测量了各种混合燃料在最高转速下的负荷特性和速度特性,以及主要工况下的示功图,并对燃烧特性进行了分析。试验结果发现:在柴油中加入一定比例的DMC后,由于物性参数的变化和喷雾特性的改善,混合燃料能够改善柴油机的燃烧与排放——热效率得到明显的提高,尤其在低转速下改善显著;烟度和氮氧化物排放同时降低,外特性线上的一氧化碳降低,碳氢排放仍然很低。对燃烧特性的分析发现:DMC柴油混合燃料的着火延迟延长,燃烧速率加快,燃烧持续期缩短。  相似文献   

16.
《能源学会志》2020,93(4):1624-1633
Depletion of fossil fuels and stringent emission norms focus attention to discover an evitable source of alternative fuel in order to attribute a significant compensation on conventional fuels. Besides, waste management policies encourage the valorization of different wastes for the production of alternative fuels in order to reduce the challenges of waste management. In this context, pyrolysis has become an emerging trend to convert different wastes into alternate fuel and suitable to be used as a substitute fuel for CI engines. The current investigation provides a sustainable and feasible solution for waste plastic management by widening the gap between global plastic production and plastic waste generation. It investigates the performance and emission of a single cylinder DI four stroke diesel engine using waste plastic oil (WPO) derived from pyrolysis of waste plastics using Zeolite-A as catalyst. Engine load tests have been conducted taking waste plastic oil and subsequently a blend of waste plastic oil by 10%, 20%, and 30% in volume proportions with diesel as fuel. The performance of the test engine in terms of brake thermal efficiency is found marginally higher and brake specific fuel consumption comparatively lowest for 20% WPO-diesel blend than pure diesel. The NOx and HC emission is found lower under low load condition and became higher by increasing the load as compared to diesel. Fuel exergy was significantly increasing after blending of WPO with pure diesel, but exergetic efficiency of the blended fuels followed the reverse trend. However, increase in load of the engine improved the exergetic efficiency. The 20% WPO–diesel blended fuel is found suitable to be used as an alternative fuel for diesel engine.  相似文献   

17.
Fast exhausting fossil fuel reserves and high rise in the air pollution levels due to combustion of these fuels bound us to discover some cleaner and environment-friendly fuels for the engines. Biodiesel from edible and non-edible seed oils has been identified as a better alternate of the diesel fuel in engines with a little sacrifice in terms of power output but with an improvement in exhaust emissions. The aim of the present research work is to optimize the input parameters of diesel engine running on Polanga biodiesel to improve performance and exhaust emissions. The input parameters selected for optimization are fuel injection timing, fuel injection pressure, Polanga biodiesel blend, and engine load with respect to brake thermal efficiency, brake specific fuel consumption, hydrocarbon emission, smoke opacity, and emission of nitrogen oxides. Relative weights of the response variables were calculated by standard deviation. The optimum combination of input parameters was obtained by Taguchi-based Multi-Objective Optimization by Ratio Analysis. Experiments were performed according to Taguchi’s L16 orthogonal array in a random manner in which three replicates of each experiment were noted. The optimum combination of input parameters for maximum performance and minimum exhaust emissions found to be as fuel injection timing 27° bTDC, fuel injection pressure –? 220 bar, biodiesel blend –? B40, and engine load –? 60%. The optimum values of the response variables, at the obtained optimum combination of input parameters, were predicted by Taguchi method and then verified experimentally and a good relation was found between them. These optimum values found to be as brake thermal efficiency –? 36.351%, brake specific fuel consumption –? 0.322 kg/kW-h, hydrocarbon emission –? 2.193 ppm, smoke opacity –? 80.925 HSU, and NOx emission –? 690.987 ppmv.  相似文献   

18.
Palm oil (PO) was treated using different methods in order to use and test it as fuel in Compression Ignition (CI) engines. The treatments include PO preheated and preparation of PO/diesel oil blends, using mixtures of PO with waste cooking oil (WCO), which are converted into esters by a transesterification process. The purpose of this study is to evaluate the potential of the palm oil-based biofuels to replace diesel oil in CI engines.Tests were conducted in a single cylinder, four-stroke, air-cooled, direct injection diesel engine (no engine modifications were required). Experiments were initially carried out with diesel oil for providing baseline data. All the tested fuels have a low heating value compared to diesel fuel. A high fraction of PO in diesel fuel decreases the heating value of the blend. The brake thermal efficiency increases for the PO/Diesel blends. HC emissions for all those fuels except for the PO/Diesel blends are found lower, while CO emissions rise for all types of fuels. NOx emissions are higher at low load, but lower at full load, for the engine fueled with PO and lower both at middle and full load for the engine fueled with the esters.  相似文献   

19.
Honne oil methyl ester (HOME) is produced from a nonedible vegetable oil, namely, honne oil, available abundantly in India. It has remained as an untapped new possible source of alternative fuel that can be used for diesel engines. The present research is aimed at investigating experimentally the performance, exhaust emission, and combustion characteristics of a direct injection diesel engine (single cylinder, water cooled) typically used in agricultural sector over the entire load range when fuelled with HOME and diesel fuel blends, HM20 (20% HOME + 80% diesel fuel)–HM100. The properties of these blends are found to be comparable with diesel fuel conforming to the American and European standards. The combustion parameters of HM20 are found to be slightly better than neat diesel (ND). For other blend ratios, these combustion parameters deviated compared with ND. The performance (brake thermal efficiency (BTE), brake‐specific fuel consumption, and exhaust gas temperature) of HM20 is better than ND. For other blend ratios, BTE is inferior compared with ND. The emissions (CO and SO) of HM20–HM100, throughout the entire load range, are dropped significantly compared with ND. Unburned hydrocarbon emissions of HM20–HM40, throughout the entire load range, is slightly decreased, whereas for other blend ratios, it is increased compared with ND. NOx emissions of HM20, throughout the entire load range, is slightly increased, whereas for other blend ratios, it is slightly decreased. The reductions in exhaust emissions together with increase in BTE made the blend HM20 a suitable alternative fuel for diesel fuel and thus could help in controlling air pollution. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Vehicular Pollution and environmental degradation are on the rise with increasing vehicles and to stop this strict regulation have been put on vehicular emissions. Also, the depleting fossil fuels are of great concern for energy security. This has motivated the researchers to invest considerable resources in finding cleaner burning, sustainable and renewable fuels. However renewable fuels independently are not sufficient to deal with the problem at hand due to supply constraints. Hence, advanced combustion technologies such as homogeneous charge compression ignition (HCCI), low-temperature combustion (LTC), and dual fuel engines are extensively researched upon. In this context, this work investigates dual fuel mode combustion using a constant speed diesel engine, operated using hydrogen and diesel. The engine is operated at 25, 50 and 75% loads and substitution of diesel energy with hydrogen energy is done as 0, 5, 10 and 20%. The effect of hydrogen energy share (HES) enhancement on engine performance and emissions is investigated. In the tested range, slightly detrimental effect of HES on brake thermal efficiency (BTE) and brake specific fuel consumption (BSFC) is observed. Comparision of NO and NO2 emissions is done to understand the non-thermal influence of H2 on the NOx emissions. Hence, HES is found beneficial in reducing harmful emissions at low and mid loads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号