首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A printed dual‐band filtering antenna with decent frequency selectivity at 2.45 and 5.2 GHz for wireless local area network (WLAN) applications is developed. The filtering antenna is compact, which comprises a tapped feed line, two dual‐band stub‐loaded open‐loop resonators, and a dual‐band bended monopole. It can be easily printed on a single layer PCB substrate with low profile and low cost. The entire structure is very simple compared with the previously reported dual‐band filtering antennas that requiring multi‐layer structures. The monopole functions as not only a radiator, but also the last resonator of a dual‐band filter. The developed antenna exhibits good frequency selectivity and out‐of‐band suppression. In addition, the two operation bands can be adjusted relatively individually. The proposed antenna is optimized and fabricated. The experimental results show it has good frequency selectivity at both 2.45 and 5.2 GHz, wide bandwidth 11.8% and 7.8%, and excellent out‐of‐band suppression.  相似文献   

2.
A novel broadband bow‐tie antenna with high‐gain performance throughout the operating band is proposed and investigated in this article. This folded sectorial bow‐tie antenna is fed by a Г‐shaped strip balun, and the electromagnetic coupling feed mechanism is easy to optimize the impedance matching. The study of proposed antenna performance with different geometric parameters has been conducted. The final design is fabricated and measured, and the results exhibit a good impedance bandwidth of approximately 93.3% for VSWR≤2 ranging from 1.35 to 3.71 GHz, stable gain of 8.43‐10.02 dBi, and unidirectional radiation patterns over the whole operating band. Broadband coverage, stable high‐gain performance, and the simple structure make this antenna an excellent candidate for wireless communication systems.  相似文献   

3.
A miniaturized ultra‐wideband (UWB) monopole antenna with reconfigurable multiple‐band notched performance is demonstrated. By modifying the shape of the patch and the ground plane, the UWB operation is achieved. The first and second band‐notches are respectively generated by etching a rectangular slot with open ends and a U‐shaped slot in the patch, and the third band‐notch is produced by loading a C‐shaped parasitic element beneath the patch. To realize the reconfigurable band‐notched functions, four PIN diodes are inserted in three band‐rejected structures. The antenna has a compact dimension of 30 mm × 26 mm. It can switch between a UWB state and several band‐notch states by alternating the states of the diodes. Also, good radiation patterns are obtained.  相似文献   

4.
Breast cancer, has been a significant cancer type for women on the society. Early diagnosis and timely medical treatment are important key factors spreading to the other tissues and permitting long‐time survival of patients. Since the existing methods have several serious shortfalls, microwave imaging method for the diagnosis of early stage tumors has been interested by different scientific research groups in terms of moderating endogenous the electrical property difference between healthy tissue and malignancies. In this article, both an ultra‐wideband bow‐tie antenna with enhanced bandwidth and a 3D breast model which has different electrical properties which are permittivity and conductivity is created in simulation tool to solve electromagnetic field values. Return loss, VSWR, and radiation pattern characteristics, which are significant antenna parameters, are simulated and obtained whether the antenna possess an efficient characteristic or not. Electric field values over the breast tissue in which there is a tumor or not tumor are evaluated. In this article, above‐mentioned values of frequency bandwidth, dielectric constant of antenna's substrate, electric field, and tumor information were consisted in their dataset. This dataset obtained from the Bow‐Tie Antenna was used to detect the breast cancer with one of the data mining method, which is K‐Nearest Neighbor Algorithm.  相似文献   

5.
A novel frequency agile multiple‐input‐multiple‐output (MIMO) patch antenna based on a reconfigurable feedline is proposed. The proposed antenna structure has two hexagonal‐shaped patch antenna elements. A defected ground structure having hexagonal shape is included in the ground plane to make the design compact and improve isolation among antenna elements. Further compactness is achieved using reactive loading. Frequency reconfigurability is realized by employing varactor diodes in the microstrip feedline. The proposed antenna achieves a frequency reconfigurable band with wide tuning range from 1.42 to 2.27 GHz with good gain and efficiency. Furthermore, an envelope correlation coefficient value of less than 0.2 and minimum isolation of 12 dB was achieved, displaying good MIMO performance. The presented antenna has a planar, low profile design with compact size of 100 × 50 mm2. Thus, frequency agility, wide range tuning, compactness, and planar structure of the proposed antenna design make it suitable for modern wireless handheld devices particularly in cognitive radio applications.  相似文献   

6.
A dual‐mode dual‐band rectangular waveguide filtering antenna with fourth‐order Chebyshev response is presented. First, design equations and processes of filtering networks are presented. Then, filtering antenna is constructed through cross‐shaped slot for radiation instead of the output port of filtering networks. A pair of degenerated modes are exploited in waveguide resonator design to miniaturize the whole size and form two passbands. In addition, the bandwidth can be adjusted flexibly in proper range. A prototype at C‐band is fabricated and measured, showing two operation channels of 5 to 5.05 GHz and 5.1 to 5.15 GHz with high rejection between two bands. Good agreement is achieved between the simulations and measurements, showing excellent performance in terms of filtering, out‐of‐band rejection, and gain in bands.  相似文献   

7.
认知无线电技术可以择机地使用注册信道,从而提高频谱的利用率。但是这种提高只是局限于时域上的。将具有空间分隔特性的智能天线引入次无线电系统,设计了一种在空间上可以复用的频谱访问协议。该协议使次用户(SU)和主用户(PU)可以同时共存,优化了频谱和空间资源的分配,进一步提高了频谱的使用效率。此外,还对SU的传输成功概率和网络吞吐量进行了理论分析和仿真。结果表明:与使用传统全向天线的认知无线电相比,基于智能天线的认知无线电系统能获得更多的传输机会,吞吐量显著提升。  相似文献   

8.
This article presents a compact quadrilateral patch antenna design for cognitive radio system having dimensions of 50 × 50 × 1.6 mm3. The proposed antenna is designed with a triangular shape slot structure and quadrilateral patch with two step feedline on the either side of the FR4 substrate which is capable of switching for twelve different bands of frequency. The frequency range varies from 2.46 to 3.90 GHz, with a relative impedance bandwidth of around 45%. To achieve frequency agility six PIN diodes are used to vary the length of higher inclined arms of the slot. In the proposed approach, incorporation of biasing circuit into the ground plane reduces the parasitic effect, which improves the performance of the antenna. Moreover, the robustness of the proposed design is demonstrated in terms of reduction of antenna size, a number of frequency state, frequency ratio and number of PIN diodes used for frequency agility. The simulated and measured results for reflection coefficient, radiation pattern, relative bandwidth, gain, and efficiency are found to be in good agreement with each other.  相似文献   

9.
In this article, a novel six port antenna for better spectrum utilization efficiency in cognitive radio (CR) applications is presented. In this six port antenna system, an ultra‐wideband (UWB) sensing antenna and five wideband/narrowband (NB) antennas are integrated on the same substrate in a compact area of 1134 mm2 . Antenna associated with port 1, which is meant for sensing, has ?10 dB reflection coefficient bandwidth of 3 to 11 GHz and the antennas associated with ports 2, 3, 4, 5, and 6 have ?10 dB reflection coefficient bandwidths of 3.6 to 5.8 GHz (single band), 2.9 to 3.6 GHz and 5.4 to 7.98 GHz (dual band), 7.95 to 8.38 GHz and 9 to 9.85 GHz (dual band), 8.38 to 9 GHz (single band) and 9.7 to 10.7 GHz (single band), respectively. Minimum isolation of 20 dB is attained between UWB sensing antenna and any narrowband/wideband antenna except between the antennas associated with ports 1 and 2 where minimum isolation of 12 dB is achieved over the operating bandwidth of UWB sensing antenna. Moreover, among all wideband/narrowband antennas, isolation of less than 15 dB is achieved. More importantly, the narrowband and wideband antennas meant for communication cover all frequency bands in UWB and a good match between the simulated and measured results is noticed.  相似文献   

10.
Present article embodies the design and analysis of an octagonal shaped split ring resonator based multiband antenna fed at vertex for wireless applications with frequency‐band reconfigurable characteristics. The proposed antenna is printed on FR4 substrate with electrical dimension of 0.4884 λ × 0.4329 λ × 0.0178 λ (44 × 39 × 1.6 mm3), at lower frequency of 3.33 GHz. The antenna consists of SRR based vertex fed octagonal ring as the radiation element and switchable reclined L‐shaped slotted ground plane. Antenna achieves six bands for wireless standards viz: upper WLAN (5.0/5.8 GHz), lower WiMAX (3.3 GHz), super extended C‐band (6.6 GHz), middle X band (9.9 GHz—for space communication), and lower KU band (15.9 GHz—for satellite communication systems operating band). Stable radiation patterns are observed for the operating bands with low cross polarization. The proposed design achieves hexa band characteristics during switching ON state of PIN diode located at reclined L‐shaped slot in the ground plane. Experimental characteristic of antenna shows close agreement with those obtained by simulation of the proposed antenna.  相似文献   

11.
In this article a novel wide‐band artificial magnetic conductor (AMC) based wideband directional antenna is presented for ultra‐wideband (UWB) applications. The proposed novel cross‐slot AMC (CSAMC) achieves wide ±90° reflection phase bandwidth of 4.07 GHz (44.69%) and is used as a reflector. The overall antenna structure is designed with 4 × 4 CSAMC unit cell array and has very compact size of (0.584λ0 × 0.584λ0). The proposed structure improves the radiation properties and exhibits 91.5% (3.13‐8.41 GHz) impedance bandwidth (VSWR ≤2). Additionally, it results in significant improvement in gain and front to back ratio. The proposed antenna is fabricated and its measured performance is in good agreement with simulation results.  相似文献   

12.
In this article, a new multiband frequency reconfigurable substrate integrated waveguide cavity slot antenna was designed using Computer Simulation Technology software tool for addressing the specific design challenges posed by the internet of things (IoT) based cognitive radio networks. Reconfiguration of frequency bands is achieved using PIN diodes. The antenna resonated at 2.624, 2.664, 2.720, 2.752, 4.304, 4.532, 4.556, 5.236, 5.304, 5.368, 5.332, and 5.392 GHz. The resonant frequency capability and radiation performance are demonstrated by both simulations and measurements. The simulated and measured results were in agreement. The higher efficiency, gain and average bandwidth obtained are 90%, 8.2 dBi and 65 MHz, respectively. The compactness, integrity, reliability, and performance at various operating frequencies make the proposed antenna a good candidate for IoT applications.  相似文献   

13.
A reconfigurable wearable repeater antenna (RWRA) for wireless body area network (WBAN) applications is proposed. The RWRA can work at triple‐mode by controlling the state of PIN diodes, which are repeater, on‐body and off‐body modes. The antenna is fed by a single port at side instead of bottom for the sake of reducing the profile and improving the coupling strength between the RWRA and an implantable antenna. The total size of the antenna is π × 282 × 4.8 mm3. To validate the performance, the RWRA is fabricated and measured on minced pork. Measured bandwidths at repeater and on‐/off‐body modes are 5.8, 84, and 54 MHz, respectively. Radiation patterns are omnidirectional with vertical polarization at on‐body mode and broadside at off‐body mode, which measured peak gains are 1.2 and 5.4 dBi, respectively. Specific absorption rate (SAR) values at all three modes are analyzed in this article as well. Coupling strength between the RWRA and an implantable antenna is also measured. Besides, the effect of distance and misalignment between them are analyzed.  相似文献   

14.
In this article, a Z‐shaped antenna is designed for 2.45 GHz ISM band applications. The proposed antenna is surrounded by metasurface‐based unit cells. The unit cells are designed to reflect for the proposed frequency. Each of this unit cells are activated with the help of a diode. Unit cell is considered active by switching on the diode of respective unit cell. According to the activation of unit cell the pattern of the antenna will be reconfigured. The 2.45 GHz ISM band pattern reconfigurable microstrip antenna is presented. The radiation pattern of the antenna can be steered toward a desired direction by activating appropriate metasurface unit cell, minimizing the interference and optimizing medium usage. The proposed antenna performance is presented with the help of reflection coefficient and the pattern steerable capability by activating metasurface unit cells. The proposed antenna is having azimuth‐pattern reconfigurable capability around 360°.  相似文献   

15.
A wide‐beam circularly polarized (CP) cross‐dipole antenna for GNSS applications is proposed in this article. This cross‐dipole antenna is fed by a coaxial cable, on which the slots is added to optimize the impedance matching. These two pairs of dipole arms are designed with different lengths to obtain the circularly polarized radiation. Enhanced wide‐beam CP radiation characteristics can be achieved by curving the dipole arms and adjusting the distance between the arms and the metallic ground plane. The study of proposed antenna performance with different geometric parameters has been conducted. The final antenna exhibits a good impedance bandwidth (IBW) of ~13.1% (1.50‐1.71 GHz), and the 3‐dB axial‐ratio bandwidth is over 7% (1.52‐1.64 GHz). Broad pattern coverage of more than 140°, pure CP radiation at all designed bands and a wide 3 dB axial‐ratio beamwidth (ARBW) of nearly 150° makes this antenna an excellent candidate for satellite communications and navigation systems.  相似文献   

16.
A dual‐feed small size full‐metal‐case (FMC) antenna for hepta‐band LTE/WWAN operation in smartphone applications is presented. The antenna proposed here is an integrated part of the full metal case located at the top edge of the smartphone, and it only occupies a small volume of 5 mm × 70 mm × 6 mm. It has two feeding ports that are separately connected to an ON/OFF switch (SW1 and SW2) for controlling the lower and higher operation bands, respectively. For the case when SW1 (ON) and SW2 (OFF), Port‐1 is engaged, and a lower operating band that covers the GSM850/900 operation (824–960 MHz) is achieved. In contrast, Port‐2 will be engaged for the case when SW1 (OFF) and SW2 (ON), and with the aid of a wideband matching circuit, the antenna can induce a higher operating band that can cover the DCS/PCS/UMTS2100/LTE2300/LTE2500 operations (1690–2690 MHz). Detailed design considerations of the proposed FMC antenna are described, and both experimental and simulation results are also presented and discussed. © 2016 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:595–601, 2016.  相似文献   

17.
This paper presents a reconfigurable terahertz Vivaldi antenna based on a hybrid graphene‐metal structure. The proposed antenna uses a novel tapered slot edge with hybrid graphene‐metal structure to improve the electromagnetic characteristics of classical metallic Vivaldi antennas. The results show that the proposed hybrid graphene‐metal Vivaldi antenna can be dynamically reconfigured via electric field bias, and has a low reflection coefficient. Moreover, this study demonstrates that the proposed antenna has excellent gain and radiation efficiency than that of the graphene Vivaldi antenna, and brings more possibilities to the realization and application of graphene antennas in the terahertz band, which is expected to use in terahertz wireless communication in the future.  相似文献   

18.
In this endeavor, a new multiple‐input‐multiple‐output antenna with a sharp rejection at wireless local area network (WLAN) band is designed and practically examined for portable wireless ultra‐wideband applications. The intended diversity antenna possess a small size of 15 mm × 26 mm and two inverted L‐strip are loaded over the conventional rectangular patch antenna to form protrudent‐shaped radiator that acts as a radiating element. The sharp band‐rejection capability at WLAN is established by incising the L‐shaped slits at the decoupling structure. More than ?21 dB isolation is accomplished for the complete working band (ie, 2.87 ‐17 GHz). Degradation in the antenna efficiency at the center frequency of band rejection corroborates the good interference rejection capability. The working capabilities of the intended antenna are tested by using the isolation between the ports, total efficiency, gain, envelope correlation coefficient, radiation pattern, mean effective gain, and total active reflection coefficient.  相似文献   

19.
An ultra‐wideband planar fractal monopole antenna with dual‐notch characteristics is presented in this article. The microstrip fed antenna consists of nested trapezoidal rings and defected ground plane. Measured results show that the proposed antenna operates with a 10 dB return loss bandwidth from 2.2 to 10.8 GHz with notch bands at (2500‐2690) MHz and (3300‐4200) MHz covering LTE 2500, WiMAX and part of C‐band.  相似文献   

20.
A reconfigurable active frequency selective surface (AFSS) with ultra‐wideband (UWB) characteristics is presented in this article. The proposed AFSS consists of a periodic array of three metal layers and two dielectric layers. PIN diodes are arranged on the top and bottom metal layers which can rebuild the function of AFSS. The transmission bandwidth of the AFSS with OFF‐state diodes is 8 to 12.5 GHz with a fractional bandwidth of 44%, and the transmission coefficient of the FSS with ON‐state diodes is lower than ?10 dB from 2 to 18 GHz. Additionally, the AFSS is angular stable and polarization‐insensitive for both transverse electric and transverse magnetic polarizations. The simulation results show that the proposed AFSS is an effective candidate for radome applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号