首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A dual‐band MIMO slot antenna with polarization diversity and improved gain is proposed in this article. The antenna is composed of two C‐type back‐to‐back connected slot resonators and offers resonances at 3.5 and 5.2 GHz. This antenna element is further used to design a MIMO antenna. By introducing one U‐shaped slot between two antenna elements, isolation between the ports of this MIMO antenna is improved further. Finally, an artificial magnetic conductor (AMC) is placed below the MIMO antenna to enhance its gain. Gain enhancement of 1.5 and 2.2 dB is achieved at lower and upper band, respectively. S‐parameters, radiation patterns, gain, envelope correlation coefficient, and channel capacity loss are investigated to conclude about its performances in MIMO applications. Dual band dual polarization (circular and linear), improved isolation, polarization diversity (right‐hand circular polarization and left‐hand circular polarization), gain enhancement all are presented in a simple design represents the novelty of the proposed MIMO antenna.  相似文献   

2.
A compact four and eight elements multiple‐input‐multiple‐output (MIMO) antenna designed for WLAN applications is presented in this article. The antenna operates in IEEE 802.11b/g WLAN (2.4 GHz), IEEE 802.11 ac/n WLAN (5.2 and 5.8 GHz) and WiMAX (5.8 GHz) bands. The resonated mode of the antenna is achieved by two unequal Reverse‐L shaped, line‐shaped slots on top and parasitic element on the ground layer. The single antenna provides wide bandwidth of about 29% (2.3‐3.1 GHz) in lower and 22% (4.9‐6.1 GHz) in the upper band. The compactness of the single element antenna is found about 95% with respect to the patch and 61% in overall dimension. Thereafter an investigation is carried out to design two, four, and eight elements MIMO antennas. All of the multi‐element structures provide compact configuration and cover entire WLAN frequency ranges (2.4‐2.48 and 5.15‐5.85 GHz). The dimension of the proposed eight element MIMO antenna is 102 × 52 × 1.6 mm3. It covers the frequency (measured) from 2.4 to 3.1 GHz and 5 to 6.1 GHz. The diversity performance of the proposed MIMO antenna is also assessed in terms of the envelope correlation coefficient (ECC), diversity gain (DG), and total active reflection co‐efficient (TARC). The ECC is found <0.5 whereas the DG >9.0 is obtained for the desired bands.  相似文献   

3.
A compact four‐element multiple‐input‐multiple‐output (MIMO) antenna for ultra‐wideband (UWB) applications with WLAN band‐notched characteristics is proposed here. The proposed antenna has been designed to operate from 2 to 12 GHz while reject the frequencies between 4.9 to 6.4 GHz. The four antenna elements are placed orthogonal to attain the polarization diversity and high isolation. A thin stub connected to the ground plane is deployed as a LC notch filter to accomplish the rejected WLAN band in each antenna element. The mutual coupling between the adjacent elements is at least 17 dB while it has low indoor and outdoor envelop correlation (<0.45) and high gain with compact size of two boards, each measuring 50 × 25 mm2. To validate the concept, the prototype antenna is manufactured and measured. The comparison of the simulation results showed good agreement with the measured results. The low‐profile design and compact size of the proposed MIMO antenna make it a good candidate for diversity applications desired in portable devices operating in the UWB region.  相似文献   

4.
This communication explains the designing of two‐port based hybrid radiator for multiple‐input‐multiple‐output (MIMO) applications. Hybrid radiator includes U‐shaped printed line and ring dielectric resonator antenna (ri‐DRA). Wideband characteristics have been achieved by exciting both the U‐shaped printed line along with ri‐DRA. The U‐shaped metallic line acts as a magnetic dipole and helps to excite fundamental hybrid mode (HE11δ) in the ri‐DRA. Dual L‐shaped and a rectangular defect have been created in ground plane for achieving wideband isolation over the working frequency band. Optimized Scattering parameters and far‐field results are verified by fabricating and testing of antenna prototype. Experimental outcomes confirm that the proposed MIMO antenna gives wider impedance bandwidth (80%), improved port isolation (better than 18 dB), stable gain (~ 4 dB), and radiation pattern. Various MIMO performance factors are analyzed and instituted in the tolerable boundaries.  相似文献   

5.
This letter investigates an integrated antenna configuration for WLAN/WiMAX applications. The proposed composite antenna configuration is simply the grouping of ring dielectric resonator along with reformed square‐shaped slot antenna. Three significant characteristics of proposed article are: (1) aperture act as magnetic dipole and excite HE11δ mode in ring dielectric resonator antenna; (2) reforming of square aperture generates orthogonal modes in ring DRA and creates CP in lower frequency band; (3) annular‐shaped Microstrip line along with reformed square aperture creates CP wave in upper frequency band. With the purpose of certifying the simulated outcomes, prototype of proposed structure is fabricated and tested. Good settlement is to be got between experimental and software generated outcome. Experimental outcomes show that the proposed radiating structure is operating over 2 frequency bands that is, 2.88‐3.72 and 5.4‐5.95 GHz. Measured 3‐dB axial ratio bandwidth in lower and upper frequency band is approximately 9.52% (3.0‐3.4 GHz) and 5.85% (5.64‐5.98 GHz), respectively. These outcomes indicate that the proposed composite antenna structure is appropriate for WLAN and WiMAX applications.  相似文献   

6.
A microstrip antenna with dual‐band reconfigurable circular polarization (CP) characteristics in Wireless Local Area Network (WLAN) and Worldwide Interoperability for Microwave Access (WiMAX) bands is presented in this article. The proposed antenna has a symmetrical U‐shaped slot with PIN diodes on the ground plane. The slotted ground generates a resonant mode for broad impedance‐band width, and excites contrary CP state at 2.45 GHz for WLAN and 3.4 GHz for WiMAX, respectively. Because switching the states of PIN diodes on the slot can redirect the current path, the CP state of the proposed antenna can be simply switched between the right‐handed CP and left‐handed CP. The proposed antenna has a low profile and a simple structure. Measured results of the fabricated antenna prototype are carried out to verify the simulation analysis. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:109–114, 2015.  相似文献   

7.
A dual‐band antenna array is proposed for the application of base station (BS) in 2G/3G/long term evaluation (LTE) mobile communications. This antenna consists of two independent ±45° dual‐polarized arrays, one of which operates from 1.71 to 2.17 GHz, and the other of which is designed from 2.5 to 2.69 GHz. The proposed BS antenna array has a high isolation of greater than 29 dB and high front‐to‐back ratio of more than 26 dB at the operating frequencies. The measured peak gain is 17.9 and 18.1 dBi for the lower and upper bands, respectively, and the cross polarizations isolation (CPI)(within ±60º of the mainlobe) is 16 dB lower than the broadside co‐polarization. It was confirmed that the proposed antenna array meets the communication standards in China. © 2015 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:154–163, 2016.  相似文献   

8.
A circularly polarized multiple‐input multiple‐output (MIMO) antenna is presented for global system for mobile (GSM) (710 MHz) and lower long term evolution (LTE) (900 MHz) frequency bands. The antenna consists of four ports with four impedance transformers on the bottom substrate and elliptical rings on the upper substrates. Impedance transformers include open stub and irregular microstrip lines in order to control impedance matching and resonant frequencies. Two upper substrates that contain orthogonal elliptical rings cause the circular polarization property of the proposed antenna. The results of measurement for the presented antenna show its performance with S‐parameters of less than ?10 dB in the frequency ranges of 699‐750 MHz for GSM and 880‐1115 MHz for lower LTE applications. Also, the gain and radiation efficiency are higher than 5dBi and 70%, respectively.  相似文献   

9.
In this article, a dual‐band and wideband omnidirectional circularly polarized (CP) antenna based on the vanadium dioxide (VO2) is investigated. The operating bandwidth of such an antenna can be regulated by altering the outside temperature (T), which is attained by the insulator‐metal transition of VO2. The omnidirectional CP antenna is based on a loop antenna‐dipole model, which is composed of four tilted metal and VO2 resonant units that are loaded around a cuboid and a feeding network for broadening bandwidth. The simulated results show that when T = 50°C (State I), the 10‐dB impedance bandwidth is 45.7% (1.67‐2.66 GHz), and the 3‐dB axial ratio (AR) bandwidth is 40% (1.9‐2.85 GHz). When T = 80°C (State II), the 10‐dB impedance bandwidth is 13.8% (1.62‐1.86 GHz), and the 3‐dB AR bandwidth is 21.8% (1.68‐2.09 GHz). In order to further characterize the concept of the proposed antenna, the related parameters of such an antenna are studied using simulation software HFSS.  相似文献   

10.
This article presents design and analysis of three wide band zeroth‐order resonance antennas (antennas I, II, and III) using composite right and left‐handed transmission line (CRLH‐TL) approach. Coplanar waveguide technology, single layer via‐less structures are used to have the design flexibility. The bandwidth characteristics are analyzed by using lumped parameters of CRLH‐TL. By introducing a simple slot in the ground plane of antenna I both bandwidth enhancement and circularly polarization characteristics are achieved in antenna II. Another quarter wave L‐shaped slot has been introduced in the ground plane of antenna II to introduce a notch band in the frequency response of antenna III. Achieved measured 10 dB return loss bandwidth of antenna I and antenna II are 960 (3.3‐4.26 GHz) and 2890 MHz (2.77‐5.66 GHz), respectively. Antenna III offers measured 10 dB return loss bandwidth of 3220 MHz (2.32‐5.54 GHz) with a band notch from 2.39 to 2.99 GHz that isolates the 2.4 GHz WLAN and 3.5 GHz WiMAX band. Antenna II and antenna III have circular polarization property with measured axial ratio bandwidth of 440 MHz. The measured peak realized gain of antennas II and III is around 1.53‐2.9 dBi.  相似文献   

11.
A dual‐band circularly polarized (CP) antenna with harmonic rejection property is proposed in this paper. Four T‐shaped slits and two corner cuts are etched on the proposed microstrip patch antenna. Those structures can be used to tune the resonant frequencies of TM01 mode and TM03 mode of the antenna into the desired bands of 2.45 and 5.8 GHz with CP radiation. A shunt transmission line is employed not only to improve the impedance matching at 5.8 GHz but also to suppress the radiation at 4.9 GHz (second harmonic of 2.45 GHz). Meanwhile, two L‐shaped slits are etched on the feeding line to realize the harmonic rejection at 11.6 GHz (second harmonic of 5.8 GHz). The simulated and measured results show that this antenna has good dual‐band CP radiation property and harmonic suppression performance, which makes it a good candidate for the wireless energy harvesting system.  相似文献   

12.
In this communication, two port printed Multi Input Multi Output (MIMO) antenna with reduced radar cross section and low mutual coupling is designed and analyzed. Reduced mutual coupling (less than ?20 dB) is achieved by placing the electromagnetic band gap structure in between the two identical ports. Frequency selective surface has been used to reduce the radar cross section (more than 30 dB reduction) of the proposed antenna design, which makes it suitable for military applications. The proposed radiating design is fabricated and measured for the purpose of validation. It resonates at 6.8 GHz supporting an impedance bandwidth of 1.03 GHz from 6.12 to 7.15 GHz. It promises a gain of 4.75 dB in the working frequency range. This radiator is suitable for military radars works in C‐band.  相似文献   

13.
A dual‐port multiple‐input multiple‐output (MIMO) dielectric resonator antenna (DRA) for 5 GHz IEEE (802.11a/h/j/n/ac/ax) is discussed in this article. Two prototypes of single feed DRA and dual feed MIMO DRA are fabricated and measured results are compared with the simulated data. The proposed single feed DRA and dual feed MIMO DRA exhibits wide impedance bandwidth (IBW). Antennas have been fabricated on Rogers RT Duroid substrate with Eccostock made DRA placed over the substrate. DRAs are excited by aperture coupled feed to achieve wide bandwidth and high efficiency. The measured IBW of uniport DRA and dual‐port MIMO DRA are 26.6% (4.75‐6.21 GHz) and 27.5% (4.7‐6.2 GHz) respectively. Maximum gain of the antenna is 7.4 dBi. The results of the antennas are in good agreement with simulated data and they are suitable for WLAN applications. These antennas are also compact with area of substrate 32.8 cm2.  相似文献   

14.
A novel triple‐band antenna element by etching parasitic slot on ground plane is presented. A three‐element antenna system for WLAN MIMO communications is fabricated by using the proposed antenna element. The triple‐band antenna element is designed for the WLAN standard frequency ranges (2.4‐2.485, 5.15‐5.35, and 5.475‐5.725 GHz). The three identical antenna elements are rotationally symmetric on the substrate, isolated by using metal‐vias cavity. The measured average peak gain within the operational bandwidth is about 2.7 dBi. The isolation between the antenna elements can achieve better than 17 dB at the lower band (2.25‐2.65 GHz), while more than 32 dB at the higher bands (5.20‐5.35 and 5.47‐5.73 GHz) is obtained.  相似文献   

15.
This article proposes a compact multiple‐input multiple‐output (MIMO) antenna with the electromagnetic band gap (EBG) structures for mobile terminals. The proposed MIMO antenna is composed of two radiation patches in which diagonal and folded microstrip lines are utilized to control the frequency bands. The radiation patch, one EBG structure and a rectangular‐shaped ground plane are etched on both sides of the antenna. The EBG structures have been employed for reducing the mutual coupling between the antenna elements. As a result of the effect of these structures, the mutual coupling between the two elements is reduced by less than ?30 dB. The proposed antenna is implemented on an FR4 substrate with dimensions 20 × 10 × 1 mm3. According to measured results, frequency ranges of 2.2 to 3.6 GHz and 5.1 to 5.9 GHz with S11 < ?10 dB and also 3.7 to 5 GHz and 8 to 12 GHz with S22 < ?10 dB have been obtained. Moreover, measured S12 and S21 with values of less than ?30 dB for both Ports have been realized. Additionally, the envelope correlation and radiation efficiency of the purposed antenna are less than 0.09 and more than 82%, respectively.  相似文献   

16.
In this endeavor, a new multiple‐input‐multiple‐output antenna with a sharp rejection at wireless local area network (WLAN) band is designed and practically examined for portable wireless ultra‐wideband applications. The intended diversity antenna possess a small size of 15 mm × 26 mm and two inverted L‐strip are loaded over the conventional rectangular patch antenna to form protrudent‐shaped radiator that acts as a radiating element. The sharp band‐rejection capability at WLAN is established by incising the L‐shaped slits at the decoupling structure. More than ?21 dB isolation is accomplished for the complete working band (ie, 2.87 ‐17 GHz). Degradation in the antenna efficiency at the center frequency of band rejection corroborates the good interference rejection capability. The working capabilities of the intended antenna are tested by using the isolation between the ports, total efficiency, gain, envelope correlation coefficient, radiation pattern, mean effective gain, and total active reflection coefficient.  相似文献   

17.
This article investigates a dual band multiple input multiple output (MIMO) cylindrical dielectric resonator antenna (cDRA) for WLAN and WiMAX applications. It consists of two symmetrical orthogonally placed radiators. Each radiator is excited through a narrow rectangular aperture with the help of a microstrip line. For higher mode excitation, the proposed structure uses dual segment DRA which apparently looks like stacked geometry. The aperture fed dielectric resonator works as a feed for upper cDRA to generate higher order mode. The presented radiator covers the band between 3.3‐3.8 GHz and 5‐5.7 GHz. The measured isolation is better than 20 dB in the desired band. The average gain and radiation efficiency achieved for the proposed antenna is 6.0 dBi and 85%, respectively at the operating frequency band. In the proposed geometry, broadside radiation patterns are achieved by exciting HEM11δ and HEM12δ modes in a stacked geometry. Different MIMO performance parameters (ECC, DG, MEG, and CCL) are also estimated and analyzed. The prototype of proposed antenna is fabricated and tested. The measured outcomes are in good accord with the simulated one.  相似文献   

18.
In this communication, a dielectric resonator based circularly polarized antenna is designed and investigated. A modified aperture is used to excite dual cylindrical dielectric resonator (CDR) blocks. Two important characteristics of the proposed radiator that makes it all the more attractive are as follows: (i) excitation of dual radiating modes that is, HEM11δ and TE01δ mode in cylindrical DR along with the support of dual‐band circularly polarized (CP) waves; (ii) arrangements of dual CDR blocks to reduce the Q‐factor which is useful to enhance the impedance bandwidth of both frequency bands. Fabrication as well as experimental measurement of the antenna prototype has been done for verifying simulation outcomes. This antenna design operates over dual frequency bands, that is, 5.01‐6.41 GHz and 7.3‐7.9 GHz with the fractional bandwidth of 24.73% and 9.39%, respectively. It supports CP waves over the frequency range 6.1‐6.5 GHz and 7.4‐7.8 GHz. The proposed antenna backs right‐hand circularly polarized (RHCP) radiation with an average gain of 4.5 dBi. These characteristics make it well fitted for WLAN, WiMAX (5.2/5.5/5.8 GHz), and downlink defense purpose satellite communication (7.2‐7.7 GHz).  相似文献   

19.
A compact horizontally polarized omnidirectional slot antenna with a wide working band is presented in this article. The proposed antenna consists of 4 shorter driven cross‐shaped slots, 4 longer parasitic cross‐shaped slots, and a feeding network. Four shorter slots, placed on the same side of a circular substrate, are fed by a feeding network printed on the other side with uniform phase and magnitude. To enhance the bandwidth of the antenna, 4 longer cross‐shaped slots are inserted between adjacent longer slots to produce an additional resonant frequency. All 8 slot radiators placed symmetrically along the circumference results in an omnidirectional horizontal polarized radiation pattern. By utilizing cross‐shaped slots, a compact size of 0.53λL × 0.53λL × 0.005λLL is the free space wavelength at the lowest operational frequency) is achieved. The prototype of the proposed antenna is fabricated and measured. The measured results reasonably agree with the simulated results. The measured working band for |S11|<–10dB is from 1.62 to 2.81 GHz which successfully covers the 1.7 to 2.7 GHz 2G/3G/LTE bands. The measured gain variation in azimuthal angle is <1.7 dB within 1.7 to 2.7 GHz, and the cross polarization level is <–27 dB in the horizontal plane.  相似文献   

20.
This article presents an ultrawideband (UWB) crossed dipole antenna with circularly polarized (CP) and dual band‐notched characteristics. The proposed design is based on two orthogonal tapered dipoles for UWB CP operation and a square‐shaped cavity for high broadside gain over the entire operating bandwidth (BW). To generate dual band‐notched characteristics, two separated slots are inserted into each dipole's arm. This antenna yields measured impedance BW of 100% (3.2‐9.6 GHz) with dual‐band rejection centered at 5.2 and 5.8 GHz. Correspondingly, dual rejected bands are also observed in the original UWB CP band, which ranges from 3.2 to 8.2 GHz. Additionally, the proposed antenna exhibits high broadside gains better than 6.2 dBic and radiation efficiency greater than 82%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号