首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A new design of substrate integrated waveguide (SIW) circularly‐polarized (CP) filtering antenna is presented, which is based on dual‐mode (TE102 and TE201) cavities. The satisfying filtering performance of the antenna is realized by a coupled‐resonator circuit of two dual‐mode SIW cavities. And the radiating element of the antenna is a cavity‐backed CP slot antenna which is formed by a nonuniform ring slot integrated with the back cavity. To demonstrate the idea, a prototype antenna operating at X band is designed, fabricated, and measured. Measured results show that the 10‐dB impedance bandwidth is 4.2% (from 11.6 to 12.1 GHz), the 3‐dB axial‐ratio (AR) bandwidth is 4%, and the gain is 5.6 dBi at the center frequency of 11.8 GHz.  相似文献   

2.
This article presented a substrate integrated waveguide (SIW) cavity‐backed self‐diplexing antenna array with frequency beam scanning characteristic. The proposed array consists of 16 SIW cavity‐backed slot antennas. The SIW cavity‐backed slot antenna can be fed by two separate ports to resonate at two different frequencies and achieve high isolation better than 20 dB between two input ports. The proposed element is a typical self‐diplexing antenna. These cavity‐backed slot antennas are shunt‐fed by a compact 1 to 16 SIW power divider and series‐fed by a set of microstrip lines, respectively. As a result, this array achieves an unidirectional radiation pattern at 10.2 GHz with high gain of 15.10 dBi, and a frequency beam scanning characteristic from 7.0 to 9.0 GHz ranging from ?50° to 46°.  相似文献   

3.
A planar substrate integrated waveguide (SIW) based cavity‐backed self‐triplexing slot antenna is proposed for X‐Ku band applications. The antenna comprises of the SIW cavity, radiating slots, and feeding networks. The radiating slots; that are etched on the upper metallic plane of the SIW, are backed up by the three radiated quarter cavities (QCs). The radiating slots in the respective QCs are of different lengths, excited by three separated orthogonal feed lines to resonate at three different frequencies as 11.01, 12.15, and 13.1 GHz. By fine‐tuning the antenna parameters, an intrinsic input port isolation of better than 26 dB is realized which helps in achieving the self‐triplexing property. The behaviors of individual cavity modes at three resonant frequencies are explained with the help of Z‐parameter. The proposed antenna layout is easy to integrate with the planar circuit. The proposed antenna is fabricated and measured results display a close concern with the simulated results. Moreover, a unidirectional radiation pattern and gain of 5.1, 5.54, and 6.12 dBi at resonant frequencies are realized.  相似文献   

4.
A novel design of dual‐frequency dual‐sense circularly polarized (CP) substrate integrated waveguide (SIW) cavity‐backed slot antenna is presented for dual‐band wireless communication systems. The proposed antenna consists of square SIW cavity, asymmetrical bow‐tie‐shaped cross slot and probe feed. Due to use of asymmetrical bow‐tie‐shaped cross slot, circularly polarized wave radiates at two different frequencies with opposite sense of polarizations. The RHCP radiation occurs at (10.45‐10.54) GHz (Lower band) and LHCP occurs at (11.26‐11.34) GHz (Upper band). Moreover, in each band, sense of polarization can be change by changing the feed position. The front to back radiation ratio (FTBRR) is more than 10.5 dB and cross polarization level is lower than ?20 dB in both the bands.  相似文献   

5.
This article presents a triple‐slotted substrate integrated cavity (SIC)‐fed 2 × 2 metasurface antenna. Three modes can be obtained including TM10 mode of the metasurface, TE210, mode and TE310 mode of the SIC. The TE210 mode of SIC radiates through the two side slots and is coupled to the metasurface mainly by the two side slots, while the TE310 mode of SIC is mainly coupled to the metasurface by the middle slot. Comparing with the reported SIC‐backed slot antenna, dual‐slotted SIC‐fed patch antenna or the metasurface antenna, the proposed antenna exhibits the advantage of wide bandwidth with flat gain. One prototype operated at 10 GHz was fabricated and measured with 10‐dB fractional bandwidth of 33%, the gain of 8.1 dBi at the center frequency, the cross polarization level of 20 dB and the gain ripple of 1.5 dB.  相似文献   

6.
A compact tri‐band multiple‐input‐multiple‐output (MIMO) antenna based on a quarter‐mode slotted substrate‐integrated‐waveguide (SIW) cavity is proposed. By etching a wide slot, a single SIW cavity is divided into two sub‐cavities with the same size. They are fed by coaxial ports to form two MIMO elements and high antenna isolation can be achieved by this slot. To obtain multi‐band operations, two narrow slots are cut in the upper sub‐cavity and the other two slots are etched in the lower sub‐cavity. Three eighth‐mode resonances with different areas can simultaneously occur in these antenna elements. A prototype with the overall size of 0.34λ0 × 0.34λ0 has been fabricated. The measured center frequencies of three operating bands are 2.31, 2.91, and 3.35 GHz, respectively. The measured gain at above frequencies is 4.52, 4.29, and 4.57 dBi, respectively. Moreover, the measured isolation is higher than 16.7 dB within the frequency of interest.  相似文献   

7.
A quarter‐mode (QM) substrate‐integrated‐waveguide (SIW) cavity is designed as a dual‐functional component. By etching three slots, four sub‐cavities are formed and then two of them with the same size are individually fed by a coaxial port. Three resonating frequencies are excited in the single QM SIW cavity. One of them can radiate cavity energy input by these ports into free space, implying a two‐element multiple‐input‐multiple‐output (MIMO) antenna, whereas the other two can transmit energy from one port to the other port, indicating a second‐order bandpass filter. Moreover, antenna isolation and filter bandwidth can be adjusted to a certain degree. A prototype with the overall size of 0.40λ0 × 0.40λ0 × 0.02λ0 has been fabricated. The integrated bandpass filter demonstrates the measured center frequency of 3.8 GHz and operating bandwidth of 32 MHz while the integrated MIMO antenna exhibits the frequency of 3.4 GHz, bandwidth of 67 MHz, port isolation of 18.0 dB, radiation gain of 4.0 dBi, and envelope correlation coefficient of 0.25.  相似文献   

8.
In this article, a novel resonant series slot linearly polarized antenna is realized using substrate integrated waveguide (SIW) technology for industrial scientific medical radio band (ISM) at 5.8 GHz. The proposed antenna consists of two 24° inclined slots and two metallic vias to produce alternate inductive and capacitive loads. The rectangular slots are introduced at the top metallic surface at an angle of 24° from the Y‐axis to excite a hybrid mode (TE110 + TE120) near to the modified cavity mode TE120. The resonant slots are excited with the help of an inset microstrip feedline which retain its planar integrability. The slots are excited to resonate in the TE120 mode at 5.8 GHz. To enhance the bandwidth, the location of two shorting vias are optimized in proximity to the slots. These vias help to couple the hybrid mode and the cavity modes in the desired frequency band, which leads to enhancement in the bandwidth significantly. The proposed geometry is fabricated and experimentally verified. The measured and simulated results depict a good co‐relation which show measured ?10 dB fractional bandwidth of 5.2% with a maximum gain of 7.15 dBi and the front to back ratio better than 15 dB at 5.8 GHz.  相似文献   

9.
This article reports a high gain millimeter‐wave substrate integrated waveguide (SIW) antenna using low cost printed circuit board technology. The half elliptic slots which can provide small shunt admittance, low cross polarization level and low mutual coupling are etched on the board surface of SIW as radiation slots for large array application. Design procedure for analyzing the characteristics of proposed radiation slot, the beam‐forming structure and the array antenna are presented. As examples, an 8 × 8 and a 32 × 32 SIW slot array antennas are designed and verified by experiments. Good agreements between simulation and measured results are achieved, which shows the 8 × 8 SIW slot array antenna has a gain of 20.8 dBi at 42.5 GHz, the maximum sidelobe level of 42.5 GHz E‐plane and H‐plane radiation patterns are 22.3 dB and 22.1 dB, respectively. The 32 × 32 SIW slot array antenna has a maximum measured gain of 30.05 dBi at 42.5 GHz. At 42.3 GHz, the measured antenna has a gain of 29.6 dBi and a maximum sidelobe level of 19.89 dB and 15.0 dB for the E‐plane and H‐plane radiation patterns. © 2015 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:709–718, 2015.  相似文献   

10.
A 6–18 GHz wideband cavity‐backed log‐periodic‐slot end‐fire antenna with vertical polarization for conformal application is presented. The log‐periodic folded slots and parasitic slots with 10 slot elements are applied to cover 6–18 GHz frequency band and the log‐periodic metallic cavity is placed under each slot element to keep wideband performance and prevent the effects of large metallic carrier on radiation patterns. The ground plane etched with log‐periodic slots is reversed and touched directly to the backed cavity and a dielectric cover is added to the antenna, to further improve the antenna performance. Meanwhile, a broadband microstrip‐coplanar waveguide transition is inserted in the antenna for measurements. With these designs, the proposed antenna shows good impedance matching (|S11|<27 dB) and end‐fire gain (>4 dBi) performances in 6–18 GHz. The proposed antenna also keeps low‐profile and easy flush‐mounted characteristic which is suitable for conformal applications of high speed moving carriers.  相似文献   

11.
In this article, a study of planar triple band unidirectional Substrate Integrated Waveguide (SIW) cavity backed slot antenna using equivalent circuit model is presented. The proposed antenna uses a modified dumbbell shaped slot of much larger length placed in a planar SIW cavity to excite three closely spaced SIW cavity hybrid modes which help the slot to radiate into free space. The design is analyzed with the help of equivalent circuit model to predict the resonant frequencies of the design and also to explain the excitation mechanism of the proposed slot antenna. The proposed circuit model is validated by comparing its performance with the simulation model for a wide range of parametric variation. The relationship between modification in design dimension with the variation of coupling between feed line and cavity modes is studied which gives a design guideline for the proposed antenna. The fabricated prototype of the antenna resonates at 7.39, 9.43, and 14.79 GHz with a gain of 3.2, 4.9, 4.7 dBi and front‐to‐back ratio (FTBR) of 10 dB, respectively, at three resonant frequencies which makes it suitable for C (4–8 GHz), X (8–12 GHz), and Ku (12–18 GHz) band applications.  相似文献   

12.
A method to enhance the gain of substrate integrated waveguide (SIW) beam scanning antenna is proposed in this article. 2 × 2 SIW cavity‐backed sub‐arrays are employed in array design. The antenna is constructed on two layers. The top layer places four SIW cavity‐backed sub‐arrays as radiating elements and the bottom layer is an SIW transmission line to feed the sub‐arrays. Beam scanning feature can be obtained due to the frequency dispersion. Moreover, through separating radiators to the other layer and using 2 × 2 SIW cavity‐backed sub‐arrays as radiating parts, the antenna gain is improved significantly. For a linear array, 4.1 to 6.8 dB gain enhancement is achieved compared to a conventional SIW beam scanning antenna with the same length. Then, the linear array is expanded to form a planar array for further gain improvement. A 64‐element planar beam scanning array is designed, fabricated, and tested. Experimental results show that the proposed planar array has a bandwidth from 18.5 GHz to 21. 5 GHz with beam scanning angle from ?5° to 11.5° and gain in the range of 20.5 to 21.8 dBi. The proposed high gain beam scanning antennas have potential applications in radar detection and imaging.  相似文献   

13.
A compact substrate‐integrated‐waveguide (SIW) monopulse slot antenna array with TE20 mode is proposed, manufactured, and tested in this communication. The TE20 mode electric field distribution is used in this antenna design. The phase difference required by the monopulse system is constructed by changing the orientation of the end of the top microstrip feed line. The microstrip line implements not only the feed function, but also the function of a monopulse comparator. The design greatly reduces the size of the monopulse comparator and the feed network, and improves the aperture efficiency of the antenna. Our measurement shows that the operating frequency of the antenna is 10.4 GHz, and the maximum gain of the sum beam is 13.7 dBi, and the difference beam null depth is ?26 dB. The antenna has the advantages of simple structure, small size, and easy integration of planar circuits. This proposed idea can open new ways for monopulse antenna design.  相似文献   

14.
A dual‐band half‐mode substrate integrated waveguide (HMSIW) based cavity‐backed antenna is proposed for WLAN/WBAN applications at 5/5.8 GHz, respectively. A semi‐hexagonal slot is introduced on the top plane of the cavity primarily for radiation. This slot offers miniaturization for both the TM210 and TM020 modes. Later on, two rectangular slits are loaded on the open edge of the patch, to provide miniaturization and tuning mainly for the higher frequency band. The performance of the proposed antenna is investigated in free space and in proximity of the pork tissues. In free space conditions, the measured ?10 dB fractional bandwidths are 3% and 3.1% along with peak gains of 6.25 and 6 dBi for the frequency bands at 5 and 5.8 GHz, respectively. In proximity of the pork tissues, the measured fractional bandwidth is 3.2% along with the efficiency of 81.5% at 5.8 GHz. The specific absorption rate (SAR) is 0.48 mW/g averaged over 1 g of tissues with 100 mW input power.  相似文献   

15.
In this article, a novel electrically small eighth‐mode substrate integrated waveguide (EMSIW) based leaky‐wave antenna (LWA) in planar environment is presented. The proposed antenna uses 1/8th mode SIW resonator which helps to improve compactness of the design while maintaining high gain and increased scanning angle. The proposed SIW cavity is excited by a 50 Ω microstrip line feeding to resonate at dominant TE110 mode in X‐band. The dimensions of the resonators are adjusted to keep resonant mode at same frequency. The fabricated prototype is approximately 5λ0 long. Measured results show that the proposed leaky‐wave antenna is able to operate within frequency range of 8‐10 GHz with beam scanning range of 51° and maximum gain of 13.31 dBi.  相似文献   

16.
This article presents a dual‐polarized filtering patch antenna, which uses two orthogonal modes (TE210/TE120) of the substrate integrated cavity (SIC) to couple with two orthogonal modes (TM10/TM01) of the patch by the cross slot, respectively. The second‐order filtering response on dual polarizations can be achieved by using just one SIC resonator and one slotted square patch, which display simple structure of the proposed antenna. The slotted square patch provides a new way to obtain same external quality factor of the radiator on dual polarization, which makes the performances on two polarizations agree well with each other when changing the bandwidth. High isolation can be achieved by controlling the space of the vias of the SIC. Radiation nulls can be produced by connecting the coupled lines with the feeding lines in parallel. A prototype with the entire height of 0.019 λ0 (λ0 is the free‐space wavelength at center frequency) achieves a 10‐dB bandwidth of 1.6%, the gain of 4.9 dBi at the center frequency, the port isolation of 43 dB, and the out‐of‐band rejection level of 25 dB.  相似文献   

17.
In this article, a new modified cross‐shaped coupled cubical dielectric resonator antenna (DRA) has been investigated for dual‐band dual‐polarized applications. The linearly polarized (LP) fields in DRA has been generated by using a single slot in the ground plane and kept at either 45° (SL1) or ?45° (SL2) from the microstrip feed line. Combining these two slots (SL1 and SL2) in the modified ground plane, the proposed structure able to generate circularly polarized (CP) field in DRA. But the generated CP field is not enough to cover ISM 2400 band. To achieve CP in ISM 2400 band, an extra slot (SL3) to the existing slots and an extra strip (ST) in the circular ring feed line have been included. This modified final antenna arrangement has been able to produce LP (due to loading effect, ie, slot and DRA) and CP fields (orthogonal modes have been generated, ie, TE x111 and TE y111), simultaneously. The measured CP and LP, ?10 dB impedance bandwidths are 11.85% (2.38‐2.68 GHz) and 9.11% (3.25‐3.56 GHz) in combination with the 3‐dB axial ratio bandwidth of 4.11% (2.38‐2.48 GHz). The generated CP and LP fields are used for different wireless communication bands such as ISM 2400 and Wi‐MAX (3.3‐3.7 GHz) bands.  相似文献   

18.
In this article, a wideband circularly polarized (CP) dielectric resonator (DR) over an asymmetric‐slot radiator based hybrid‐DR antenna is proposed with bi‐directional radiation characteristics. Bi‐directional CP radiation of the dual sense is obtained using a rectangular‐DR over asymmetric‐rectangular‐slot radiator with L‐shaped feed line. The asymmetric‐slot radiator feed by L‐shaped stub with the coplanar waveguide is used for generating two orthogonal modes, namely TE x δ11 and TEy1δ1 in the combined (rectangular‐DR and asymmetric‐slot radiator) hybrid‐DR antenna, which is verified by the distribution of electric field inside the rectangular DRA. The measured reflection coefficient bandwidth (S11 < ?10 dB) and axial ratio (AR) bandwidth (AR < 3 dB) of the hybrid‐DR antenna are 80.5% (1.87‐4.39 GHz) and 43.8% (1.75‐2.73 GHz), respectively. The antenna radiation is in the broadside (θ = 0°, ? = 0°) direction as well as in the backside (θ = 180°, φ = 0°) direction with equal magnitudes in both the directions. Right‐handed and left‐handed CP waves are achieved respectively, in the boresight (+Z) and the backside (?Z) directions. The proposed CP hybrid‐DR antenna gives an average gain of 3.55 dBic and radiation efficiency of 95.0% in both directions. The proposed antenna covers various wireless useful bands such as ISM 2400 band, Wi‐Fi, Bluetooth, and Wi‐MAX (2.5‐2.7 GHz).  相似文献   

19.
A compact three‐antenna MIMO system based on a triangular half‐mode SIW cavity is proposed. Two isosceles‐right cavity edges are shorted by metallic vias while a hypotenuse is opened to radiate cavity energy into the air. By etching two T‐shaped slots and adopting coaxial feedings, three antennas are formed. The same operating frequencies are achieved by adjusting the position of these slots and high isolation is obtained by optimizing their length. The proposed design has attractive features of simple configuration and compact size, which is completely printed on a single‐layered substrate without external circuitries. A prototype with the overall size of 0.53λ0 × 0.53λ0 has been fabricated. Measured results exhibit the operating frequencies of about 3.51 GHz, high isolation of 16.0 dB, moderate gain of around 4.12 dBi, good radiation efficiency of 81.22%, and low envelope correlation coefficient of 0.16.  相似文献   

20.
In this article, a dual‐polarized low‐profile microstrip patch antenna with U‐ or M‐shaped feed network is presented. The U‐ or M‐shaped feed network is printed on the same layer, which can achieve dual bands (5.3 and 5.8 GHz) and low profile (0.06 λg). Dual polarizations and high isolation are realized by making use of a quasi‐cross‐shaped slot feeding. Moreover, the port isolation is better than 25 dB, and the antenna gain is above 8.4 dBi for the two ports. And the cross‐polarization levels in both E and H planes are better than ‐30 dB for the two polarization ports, respectively. The design is suitable for array application in MIMO system. Details of the proposed design and experimental results are presented and well agreed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号