首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the lattice Boltzmann method is used in order to investigate the natural convection in a cavity with linearly heated wall(s). The bottom wall is heated uniformly and the vertical wall(s) are heated linearly, whereas the top wall is insulated. Investigation has been conducted for Rayleigh numbers of 103 to 105, while Prandtl number is varied from 0.7 to 10. The effects of an increase in Rayleigh number and Prandtl number on streamlines, isotherm counters, local Nusselt number and average Nusselt number are depicted. It has been observed that the average Nusselt number at the bottom wall augments with an increase in Prandtl number.  相似文献   

2.
3.
    
In this paper, the natural convection in a square enclosure with a rectangular heated cylinder is investigated via the lattice Boltzmann method. A detailed study is conducted on the effect of the cylinder width and the Rayleigh number on the fluid flow and heat transfer. The flow structures and heat transfer patterns are classified into eight buoyant regimes, i.e., four steady regimes, two periodic regimes, one multiple periodic regime, and one chaos regime, two of which are reported for the first time.  相似文献   

4.
    
This study focuses on the cooling of three heated obstacles with different heights mounted on the bottom of the channel wall using different aspects that influence the enhancement of the heat exchange, as is known in the concept of cooling electronic devices. The lattice Boltzmann method associated with multiple relaxation times (LBM-MRT) was adopted to simulate the physical configurations of the studied system. In this context, the D2Q9 and D2Q5 models are applied to describe the fluid flow behavior and conjugate heat transfer, respectively. The evaluation of heat exchange between the cold fluid and three-heated obstacles has been accurately analyzed under the effect of several parameters such as Reynolds number, obstacle spacing, and thermal conductivity ratio. In addition, the setting of two and three fluids flow inlets were also studied. The results are presented in terms of streamlines, isotherms, and local Nusselt curves. The heat transfer increases with increasing solid-fluid thermal conductivity. It is also more pronounced for large Reynolds numbers. Moreover, the heat transfer significantly enhances for the second and third obstacles when obstacle spacing increases. The improvement of the heat transfer is performed by the implementation of several jet flows in the studied system.  相似文献   

5.
    
The ice melting is investigated inside a square cavity with two isothermally partially active walls. The concept of dispersing hybrid alumina–Cu nanoparticles and hybrid silica–multiwalled carbon nanotubes (MWCNTs) nanoparticles is recommended for thermal performance enhancement in this thermal energy storage (TES) system. The two-dimensional explicit lattice Boltzmann convection melting scheme in the single-phase model is applied to account for the natural convection flow induced in the melt region and evolution of the solid–liquid interface. The complete melting time for the pure phase change material (PCM) using case (II) is 33.3% lower compared with other cases. If the price of hybrid Al2O3–Cu nanoparticles and heat storage capacity is important, the full melt time diminishes by 16.6% with a volume fraction of 0.01 in case (II). Once hybrid silica–MWCNT nanoparticles with a volume fraction of 0.01 are utilized inside case (II), the lowest charging time is achieved. The complete melting time abates by 23.66% in contrast to the pure PCM melting. The use of single/hybrid nanoparticles to enhance the PCM melting is not necessarily economical as efficient positions of active parts could further lessen the charging time. The efficiency of hybrid nanoparticles is linked to the type and weight proportions of nanoparticles, and positions of thermally active parts.  相似文献   

6.
In this paper the effects of a magnetic field on mixed convection flow in a two‐sided lid‐driven cavity have been analyzed by the lattice Boltzmann method (LBM). The Hartmann number varied from Ha = 0 to 100. The study has been conducted for different Richardson numbers (Ri) from 0.01 to 100 while the direction of the magnetic field was investigated in the x‐direction. Consequences demonstrate that the heat transfer augments with an increment of the Richardson number for different Hartmann numbers for two cases. The heat transfer declines with the growth of the magnetic field for various Richardson numbers for two cases. The difference between the values of heat transfer for the two cases at variant parameters is negligible but the trend of fluid flow for the two cases is multifarious. © 2011 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.20402  相似文献   

7.
    
The characteristics of forced convection heat transfer across a row of heated square cylinders kept in side-by-side arrangement are numerically investigated to examine the combined effects of Reynolds number and cylinder spacing for Ri = 0, 60 ≤ Re ≤ 160, Pr = .71, and s/d = 1.0–8.0, where the space between cylinder surfaces is s and the cylinder size is d. A numerical study was carried out using the thermal lattice Boltzmann method. The goal of this work is to explore the transitions in heat transfer phenomenon that occurs behind the cylinder and to report the corresponding regimes for heat transfer namely synchronous, quasiperiodic, and chaotic. The proposed regime of heat flow is a function of Reynolds number and spacing. The synchronous heat regime is obtained for s/d ≥ 5.0 and quasiperiodic, chaotic regimes are observed for 3.0 ≤ s/d < 5.0, s/d < 3.0, respectively at Re = 100. The instantaneous isotherms, the power spectra of the corresponding Nusselt number signals, and the significance of cylinder Nusselt number frequency are used to examine these heat flow regimes. The heat transfer regimes for a row of heated cylinders and flow regimes for a row of unheated cylinders both have comparable appearances except for the fact that the heat transfer regime is synchronous at s/d ≥ 5.0 and flow is synchronous at s/d ≥ 4.0. The chaotic or quasiperiodic heat transfer regimes occur due to merging and strong interactions between thermal blobs shed from the cylinders. Heat transfer is synchronous at a higher spacing and characterized by independent thermal blobs shedded from the cylinders. It is reported that as spacing reduces and Reynolds number increases, the mean value of the Nusselt number experienced by all cylinders increases. The important outcome of the present numerical work is that for understanding heat transfer from bluff body, the transitions that occur in heat transfer are useful.  相似文献   

8.
The effect of the lubricant flow in the micro‐grooves which resulted from the machining can be expressed in the flow fluid and heat transfer during the mechanical lubrication process. In this paper, a thermal lattice Boltzmann model (LBM), which consists of the heat viscous dissipation term, was proposed to investigate on the lubricants flow and heat transfer in the micro‐grooves. The heat, generated in the lubricating flowing process, was equivalent to a heat source R (x, t) within the fluid and added to the internal energy distribution function. The effect of the heat generated by the fluid on the flow and temperature field can be derived by comparing these two models. The results showed that the fluid temperature rises slower than the mainstream area on account of the vortex motion in the grooves. When the heat source is added to the function, the vortex became larger and the solid boundary was heated by the fluid. Thus, the improved thermal lattice Boltzmann method can accurately simulate the flow of lubricants.  相似文献   

9.
    
The present study addresses the effect of various schemes for applying an external force term on the accuracy and performance of the thermal lattice Boltzmann method (LBM) for simulation of free convection problems. Herein, the forcing schemes of Luo, shifted velocity method, Guo, and exact difference method are applied by considering three velocity discrete models of D2Q4, D2Q5, and D2Q9. The accuracy and performance of these schemes are evaluated with the simulation of three natural convection problems, namely, free convection in a closed cavity, in a square enclosure with a hot obstacle inside, and the Rayleigh-Benard problem. The obtained results based on the present thermal LBM with different forcing schemes and velocity discrete models are compared with the existing experimental and numerical data in the literature. This comparison study indicates that imposing all employed forcing schemes leads to similar performance for the simulation of free convection problems studied at the middle range of Rayleigh numbers. It is found that the Luo forcing scheme is simple for implementation in comparison with the other three forcing schemes and provides the results with acceptable accuracy at moderate Rayleigh numbers. At higher Rayleigh numbers, however, the Guo scheme is not only numerically stable but a more precise forcing scheme in comparison with the other three methods. It is illustrated that employing the discrete velocity model of D2Q4 has more appropriate numerical stability along with less computational cost in comparison with two other discrete velocity models for simulation of natural convection heat transfer.  相似文献   

10.
    
The purpose of the present paper is testing an in‐house efficiency algorithm based on lattice Boltzmann method (LBM) and using it to resolve the obtained coupled nondimensional governing equations to analyze two‐dimensional free convection inside a cold outer cavity subjected to a heated cylindrical diamond array. Steady state or oscillatory results are obtained using the Bhatnagar‐Gross‐Krook collision model associated to the thermal LBM. Both the velocity and temperature fields are solved using the D2Q9 models. With different Rayleigh numbers (Ra), the tested free convection can either achieve to steady state or oscillatory. We extended our in house Fortran 90 code using curved boundary conditions and implemented them into a cavity with a diamond array. The numerical simulations were done using distinct Ra (106 and 10 7) and distances between the four neighboring circular cylinders aligned in a diamond array. The effects of several physical parameters, including Ra and position of the hot body array on flow and heat transfer characteristics are investigated. The obtained results are highlighted in the form of streamlines, isotherms, and velocities plots. We show in this paper the stability and the efficiency of the LBM to deal with a complex geometry and its ability to reach suitable convergence criteria for high Ra (10 6 and 10 7). The numerical results indicate that LBM can simulate numerical problems with a high Ra reaching a steady state where we can depict the change of the flow pattern and enhancement of the heat transfer in the presence of heated diamond array.  相似文献   

11.
    
In this paper, the lattice Boltzmann method is used to study the acoustic waves propagation inside a differentially heated square enclosure filled with air. The waves are generated by a point sound source located at the center of this cavity. The main aim of this simulation is to simulate the interaction between the thermal convection and the propagation of these acoustic waves. The results have been validated with those obtained in the literature and show that the effect of natural convection on the acoustic waves propagation is almost negligible for low Rayleigh numbers (Ra ≤ 104), which begins to appear when the Rayleigh number begins to become important (Ra ≥ 105) and it becomes considerable for large Rayleigh numbers (Ra ≥ 106) where the thermal convection is important.  相似文献   

12.
A numerical study is presented about the effect of a uniform magnetic field on free convection in a horizontal cylindrical annulus using the lattice Boltzmann method. The inner and outer cylinders are maintained at uniform temperatures and it is assumed the walls are insulating with a magnetic field. Detailed numerical results of heat transfer rate, temperature, and velocity fields have been presented for Pr=0.7, Ra=103 to 5 × 104, and Ha=0 to 100. The computational results show that in a horizontal cylindrical annulus the flow and heat transfer are suppressed more effectively by a radial magnetic field. It is also found that the flow oscillations can be suppressed effectively by imposing an external radial magnetic field. The average Nusselt number increases by increasing the radius ratio while it decreases by increasing the Hartmann number. © 2012 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21008  相似文献   

13.
    
Natural convection and melting of ice as a phase change material dispersed with copper nanoparticles are numerically investigated. Square cavity filled with nano-mixture (Cu−ice) subjected to sinusoidal temperature distributions from the hot bottom boundary. The phase change process and heat transfer are formulated and solved using the enthalpy-based lattice Boltzmann method. Home-built numerical code is developed and validated. The effect of Rayleigh number (Ra = 104, 105, and 106) and copper nanoparticle concentration (ϕ = 0%, 1%, 3%, and 5%) on the flow characteristics and thermal performance of NePCM during the melting process is examined. According to the numerical results, the melting and charging times decrease by increasing the Rayleigh number. It is also observed that increasing the volume fraction of nanoparticle decrease melting time by up to 10%.  相似文献   

14.
In this study, the lattice Boltzmann method was used to solve the turbulent and laminar natural convection in a square cavity. In this paper a fluid with Pr = 6.2 and different Rayleigh numbers (Ra = 103, 104,105 for laminar flow and Ra = 107, 108,109 for turbulent flow) in the presence of a magnetic field (Ha = 0, 25, 50, and 100) was investigated. (Results show that the magnetic field drops the heat transfer in the laminar flow as the heat transfer behaves erratically toward the presence of a magnetic field in a turbulent flow. Moreover, the effect of the magnetic field is marginal for a turbulent flow in contrast with a laminar flow.The greatest influence of the magnetic field is observed at Ra = 105 from Ha = 0 to 100 as the heat transfer decreases significantly.  相似文献   

15.
The flow pattern and heat transfer in a composite system containing a porous region has received considerable attention due to its importance in many engineering applications. In this study a thermal lattice Boltzmann model with nine velocities, D2Q9, is employed to investigate the fluid flow, heat transfer, and entropy generation inside a channel with a heat‐generating porous block. The effects of the porous block's length, porosity, and the Reynolds number, overflow pattern, heat transfer, and entropy generation were studied. The mentioned parameters have different effects on heat transfer and conjugate phenomena. By increasing the block length, Reynolds number, and porosity the dimensionless entropy generation will reduce. © 2012 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21017  相似文献   

16.
In this study numerical predictions of entropy generation in turbulent natural convection due to internal heat generation in a square cavity are reported for the first time. Results of entropy generation analysis are obtained by solving the entropy generation equation. The values of velocity and temperature, which are the inputs of the entropy generation equation, are obtained by an improved thermal lattice-BGK model proposed in this paper. The analyzed range is wide, varying from the steady laminar symmetric state to the fully turbulent state. Distributions of entropy generation numbers, for various Rayleigh numbers, Prandtl numbers, and Eckert numbers, are given.  相似文献   

17.
为了明确辐射侧加热封闭方腔内半透明流体的自然对流传热现象及规律,采用有限体积法进行数值模拟研究,分析了瑞利数和光学厚度对流场、温度场以及传热特性的影响。结果表明:与传统侧壁加热腔内自然对流相比,辐射侧加热腔内等温线和流场分布规律不一致;随着瑞利数和光学厚度增加,涡心由中心位置沿直线向辐射入射侧斜上方偏移;随着瑞利数增加,等温线变得更均匀;随着光学厚度增加,等温线变密,努塞尔数Nu与瑞利数RaT的标度律指数减小,当光学厚度增加到一定时标度律不再变化,此时传热标度律与传统恒壁温侧加热腔内自然对流相当,满足Nu~Ra0.29T。  相似文献   

18.
本文采用格子Boltzmann方法对真实多孔介质复合腔体内的对流换热进行研究,分析了不同Ra数、多孔介质高度Y和厚度δ条件下交界面处的热滑移效应,并确定热滑移系数。利用X-CT技术对真实多孔介质材料进行断层扫描,获得实际材料内部结构图片,并进行图片处理,再导入格子Boltzmann模型中进行求解。计算结果表明:等效热滑移系数随高度Y的影响较大,靠近壁面或固体表面的系数偏大,而间隙处的系数偏小,但两处各自的值基本相同;Ra数和厚度δ的变化对等效热滑移系数的作用较小。  相似文献   

19.
本文利用随机多孔介质生成算法重构了与真实土壤外貌相近的多孔介质几何结构。通过引入不可压耦合双分布格子Boltzmann模型(lattice Boltzmann model ,LBM)对孔隙尺度下单相饱和土壤渗流和传热进行了模拟。着重讨论了不同渗流压差、孔隙率、土壤固体颗粒尺寸分布对流动与传热的影响。结果表明:土壤渗流速度与渗流压差呈线性单调递增关系,平均温度随渗流压差增加而增大,但温升速率逐渐减缓;当孔隙率增大时,渗流速度增加,且当孔隙率大于0.58时,对流换热作用迅速增强,土壤温升速率显著加快;对于相同孔隙率,当土壤固相颗粒尺寸较大时,流动出现典型优先流效应;随着土壤固相颗粒尺寸减小,土壤温度变化逐渐趋于平缓,平均温度降低。  相似文献   

20.
    
The aim of this article is to conduct the lattice Boltzmann simulation of the magnetohydrodynamic (MHD) natural conjugate heat transfer in an apportioned cavity loaded with a multiwalled carbon nanotube/water nanofluid. The divided cavity is, to some extent, heated and cooled at the upright walls, whereas the horizontal walls are adiabatic. The nanofluid properties are evaluated on the basis of experimental correlations. The parameters ranges in the study are as follows: nanoparticles' volume fraction (%): 0 ≤ ? ≤ 0.5, temperature (°C): T = 27, Rayleigh number (Ra): 103Ra ≤ 105, Hartmann number (Ha): 0 ≤ Ha ≤ 90, and the magnetic field inclination angle (γ): 0 ≤ γ ≤ π/2. The current outcomes are observed to be in great concurrence with the numerical results introduced in the literature. The impacts of the aforesaid parameters on local and average heat transfer, entropy generation, and Bejan number (Be) are explored and discussed. Indeed, the transfer of heat increases linearly with ? for a low Ra. As Ra increases, the average Nusselt number decreases for a high value of ?. The increase of nanoparticles' volume fraction leads to a reduction in the entropy generation and an increase in the Bejan number for a high Ra, but at low Ra, these functions remain constant. As the Ha increases, the transfer of heat and the entropy generation decreases, whereas there is an increase in Be. The transfer of heat, total entropy generation, and the Be depends strongly on the direction of the magnetic field. The increase of heater and cooler size has a great influence on the transfer of heat, entropy generation, and Be.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号