首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
In this article, a novel microstrip Yagi antenna under operation of the TM20 mode is proposed to obtain an enhanced end‐fire radiation pattern. First, a two‐element microstrip Yagi antenna is theoretically analyzed under different dimensions of the parasitic element. The results demonstrate that the parasitic element can act as either a reflector or director when its size is smaller or larger than the size of the driven patch, respectively. After that, the equivalent magnetic currents and electric fields of the two‐element antenna are formed to provide physical insight into the working principle and radiation performance of the antenna. With these arrangements, an array of four patch elements including one driver, one director, and two reflectors are selected for the antenna design. Unlike the traditional microstrip Yagi operating with the TM10 mode, all the patch elements involved in this design resonate with the TM20 mode, thus effectively enhancing the tilted beam angle toward the desired end‐fire direction on an infinite ground. Finally, the proposed antenna is designed, fabricated and tested. The measured results show that its impedance bandwidth is maintained at approximately 3.3%, ranging from 4.76 to 4.92 GHz. Most importantly, the maximum deviation angle of the antenna is significantly improved to approximately 58° from the broadside direction at the center frequency (4.84 GHz), while maintaining a low profile and compact size.  相似文献   

2.
This article presents two designs of matched feed for an offset fed reflector. Circular microstrip patch antennas are used in the proposed designs. Both the matched feeds achieve conjugate field matching by generating TM21 mode at an appropriate ratio to the fundamental TM11 mode. The first matched feed generates the required dual mode field distributions using a dual layer stacked patch antenna. The second matched feed is a novel design using centered circular array with the central element generating the required TM21 mode and the surrounding circular ring antenna elements operating in the TM11 mode. Both the designs are studied analytically using cavity model and are implemented in High frequency System Simulator (HFSS) and Computer Simulation Technology (CST). The matched feed designs are investigated for an offset reflector with the projected diameter, D = 50λ, focal length, F = 30λ and clearance height, H = 5λ operating at 20 GHz. The secondary field patterns of the offset reflector fed by the matched feeds are evaluated numerically using a MATLAB code based on geometrical optics technique and verified by HFSS‐PO results. Offset reflector performance such as cross‐polarization, ?30 dB cross‐polar bandwidth, gain, and first side‐lobe level are investigated for the both matched feeds.  相似文献   

3.
A dual‐band dual‐mode microstrip Yagi antenna with quasi‐end‐fire radiation patterns is proposed in this paper. It consists of five radiating patches driven by a single slot‐loaded patch placed in the middle. Meanwhile, two slot‐loaded parasitic patches are symmetrically located on two sides of the driven patch, respectively. In the lower band, the five patches involved resonate at TM01 mode. While in the upper band, all the patches resonate at TM02 mode. In order to ensure quasi‐end‐fire radiations in the both bands, four slots are symmetrically etched around the strongest surface currents of each patch resonating at TM02 mode. As a result, the resonant frequency of TM02 mode is decreased dramatically, while the resonant frequency of TM01 mode almost remains unchanged. With these arrangements, the separations between any two of the adjacent patches at their centers satisfy the requirements in design of the microstrip Yagi antenna in both bands, so as to realize the dual‐band dual‐mode microstrip Yagi antenna on a single‐layer substrate. Finally, an antenna prototype is fabricated and tested. The measured results reveal that the dual operating bands of 2.76~2.88 and 4.88~5.03 GHz for |S11| < ?10 dB are satisfactorily achieved. Most importantly, the proposed antenna can indeed realize the quasi‐end‐fire radiation patterns in dual operating bands.  相似文献   

4.
In this letter, the design and fabrication of the linear microstrip array antenna by series fed are presented. The array antenna consists of 16 reflector slot‐strip‐foam‐inverted patch (RSSFIP) antennas. The gain and efficiency of the linear array antenna is 16.6 dBi and 61% at 10 GHz, respectively. The antenna has a bandwidth (BW) of 45% from 8.1 to 12.8 GHz (S11 < ?10 dB) and side lobe level (SLL) of ?25.6 dB across the BW of 19.2% from 9.4 to 10.4 GHz. These are achieved by using a microstrip series fed with defected ground structure (DGS) to feed the patch array antenna. Good agreement is achieved between measurement and simulation results.  相似文献   

5.
In this work, a generalized design approach to compact, wideband multi‐resonant microstrip patch antenna is proposed. Theoretical criterion of the length of the prototype dipole is laid down based on the simplest dipole model and the associated eigenmodes at first. Then, the criterion is employed to reveal the general relationship between the prototype dipole length, operational modes, sizes, and radiation behaviors of the resultant multi‐resonant circular sector patch antennas. Next, a compact wideband, dual‐resonant circular sector patch antenna is designed accordingly. It is operating at the TM3/4,1 and TM9/4,1 modes within a 240° circular sector patch radiator with its radii short circuited. The antenna fabricated on a single‐layered air substrate exhibits an available radiation bandwidth of 25.0%, with a profile as small as 0.043 guided wavelength at the center frequency. It is evidently verified that the approach can be employed to realize compact, dual‐resonant wideband microstrip patch antennas without increasing antenna profile, inquiring multiple radiators or employing reactance compensation techniques. In addition, it may lead to a series of novel wideband patch antenna designs with diverse performances.  相似文献   

6.
A wideband low profile H‐shaped microstrip patch antenna (MPA) with reallocated quadruple‐mode resonance is presented for indoor wireless communication application. In this paper, the TM20 (mode 1), TM02 (mode 2), TM22 (mode 3), and additionally notch mode 4 of the proposed MPA are simultaneously employed. First, the rectangular radiating patch is reshaped as an H‐shaped radiator so as to separate a pair of degenerate modes (mode 1 and mode 2). Then, a pair of linear notches is cut on the diagonal of the patch to excite an additional notch resonance (mode 4). Finally, in order to improve the frequency of mode 1, four shorting pins are placed at the four corners of the H‐shaped patch. Therefore, the bandwidth of the antenna is dramatically increased up by utilizing four resonant modes (modes 1, 2, 3, and 4). A prototype of H‐shaped patch antenna with notches and shorting pins is manufactured and measured. The results show that the antenna achieves a broad bandwidth of about 31.7% (2.31‐3.18 GHz), and its profile is only 0.036 wavelength of center frequency. It is particularly noticed that a relative high gain of around 9.8 dBi is successfully acquired, while keeping relative stable dual‐beam radiation patterns.  相似文献   

7.
In this article, details of a dual band microstrip patch antenna (MPA) array feed for an offset reflector antenna is presented. The main objective of the proposed structure is to achieve low cross‐polarization at Φ = 90° plane in the reflector pattern. Low cross‐polar levels in the reflector pattern are achieved by illuminating the reflector with fields of the proposed dual band feed structure. A centered circular array as the dual band feed structure is proposed in which the central radiating element is a dual mode circular MPA operating at 6 GHz and the surrounding circular ring of eight circular MPA elements operating at 4 GHz in the dominant mode. The dual mode central antenna uses the concept of conjugate field matching for cross‐polarization reduction. TM21 mode is excited at an appropriate ratio with the TM11 mode to achieve the proper field matching at 6 GHz. The radius of the surrounding circular array is varied to obtain cross‐polarization better than ?30 dB at both the resonant frequencies. The offset reflector gain is found to be better than 37 dB with a 2.5 m parabolic reflector and F/D = 0.8 at both the operating frequencies.  相似文献   

8.
A dual mode square‐ring defected ground waveguide (SR‐DGW) with defected square patch is first proposed to excite a single‐feed dual mode circularly polarized (CP) patch antenna, which can improve the impedance bandwidth and achieve the CP radiation pattern. The defected square patch is called the perturbation element. By optimizing the size of the perturbation, the degenerate modes of the dual mode SR‐DGW are split and their orthogonal modes can be excited simultaneously. Due to the dual mode of the SR‐DGW, the TM01 mode, and TM10 mode of the square patch antenna are excited simultaneously, which can improve the impedance bandwidth of the antenna. Meanwhile, owing to the orthogonal modes, CP radiation pattern of the antenna is obtained. Then, for a better impedance matching, an L‐shaped spurline embedded in the feedline is introduced. The simulated and measured results show a good performance of the proposed antenna. The measured ?10 dB impedance bandwidth is 10.4% (3.56 GHz‐3.95 GHz). The measured 3 dB axial ratio bandwidth is 5.36% (3.63 GHz‐3.83 GHz). Detailed designs and experiments are described and discussed.  相似文献   

9.
A novel dual‐frequency broadband design of a single‐layer single‐feed circular microstrip antenna with an off‐centered Y‐slot is demonstrated in this communication. By selecting a suitable location of the Y‐slot in the circle, the proposed antenna on glass epoxy FR‐4 substrate not only resonates efficiently at two closely spaced frequencies (2.736 and 2.868 GHz) but also offers improved bandwidth (210 MHz or 7.5%) in comparison with a conventional circular microstrip patch antenna (~2%). From the measured results, almost identical broadside radiation patterns are obtained at two resonant frequencies, and the variation of less than 1 dBi in gain values is achieved in the frequency range where broadband behavior is observed. © 2011 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2011.  相似文献   

10.
This paper presents a wideband circularly polarized broadside radiation characteristics by using stacked rectangular dielectric resonator antenna (DRA) with different volumes. In this designed antenna, the wide input impedance‐ and axial ratio (AR)‐bandwidths come from three factors: stacked rectangular DR with different volumes, stepped‐shaped conformal strip associated with microstrip line as a feed and different type of partial ground plane. Here, the orthogonal TExδ11 and TEy1δ1 modes have been responsible for the generation of CP radiation in stacked rectangular DRA. Measured results show that the proposed stacked rectangular DRA with different volumes achieves input impedance bandwidth of 54.84% while AR bandwidth has been found to be 11.53%. The proposed antenna provides broadside right‐handed CP radiation pattern with gain ranges from 2.27–5.80 dBic and offers an average radiation efficiency of 89.48%, across the entire working bandwidth, respectively. Therefore, this antenna is very much useful for the ISM 2400 band applications.  相似文献   

11.
A dual‐band circularly polarized (CP) antenna with harmonic rejection property is proposed in this paper. Four T‐shaped slits and two corner cuts are etched on the proposed microstrip patch antenna. Those structures can be used to tune the resonant frequencies of TM01 mode and TM03 mode of the antenna into the desired bands of 2.45 and 5.8 GHz with CP radiation. A shunt transmission line is employed not only to improve the impedance matching at 5.8 GHz but also to suppress the radiation at 4.9 GHz (second harmonic of 2.45 GHz). Meanwhile, two L‐shaped slits are etched on the feeding line to realize the harmonic rejection at 11.6 GHz (second harmonic of 5.8 GHz). The simulated and measured results show that this antenna has good dual‐band CP radiation property and harmonic suppression performance, which makes it a good candidate for the wireless energy harvesting system.  相似文献   

12.
In this article, designing of a low‐profile planar linear graded index metasurface (LGIMS) lens is presented. A wide‐beam steerable high‐gain low‐profile antenna is designed by placing LGIMS over microstrip patch antenna radiator at an optimum height. Direction control of the radiation pattern of the microwave radiator by using amplitude and phase modulated metasurface is achieved. The measured peak gain of 13.50 dBi at an operating frequency of 10.08 GHz with progressively beam steering characteristic and progressive enhanced gain within a large conical region of apex angle 64°. The measured maximum gain tolerance of 2.43 dB with significantly reduced side lobe level is obtained by mechanically moving the ultrathin LGIMS lens along the negative parallel radiator axis. The mechanical movement of LGIMS lens over radiator results in to beam steering up to +32°. A maximum measured gain enhancement of 8.75 dB is achieved. The positive parallel radiator axis movement of LGIMS causes gradual broadside gain enhancement with maximum gain enhancement of 1.5 dB. The measured results are in good agreement with the simulated results.  相似文献   

13.
This article proposes ultra‐miniature microstrip patches with direct and electromagnetically coupled feeding mechanism for wireless communications at 10 GHz. Antenna size reduction is achieved here by loading a modified Minkowski fractal (type‐2) defected ground structure (MFDGS‐II) exactly beneath the radiating patch. The proposed method involves the selection of best DGS configuration through sensitivity analysis of the antenna structure. From different applications point of view, three different designs: a single layer direct fed patch and two electromagnetically coupled fed multi‐layered microstrip patch antennas are proposed here and designed with MFDGS‐II. The resonant frequencies of the antenna designs are reduced in a significant manner incorporating MFDGS‐II without any change in the physical size of the antenna. The prototypes of the proposed antennas are fabricated, and the performance parameters are measured. Compared with other existing structures, with a lower patch size of 0.20 λ0 × 0.15 λ0, the proposed single layered antenna with microstrip feed achieves a patch size reduction up to 67% and an overall volumetric reduction of 84%, respectively. Similarly, the proposed multi‐layered patch with proximity feed exhibits a maximum impedance bandwidth of 600 MHz and the aperture coupled fed patch has a realized gain of 6.2 dBi with radiation efficiency of 91% centered at 10 GHz. All three proposed compact antenna structures are best in three different aspects and have the potential to meet the practical requirements for X‐band portable wireless applications.  相似文献   

14.
A filtering antenna using dielectric strip resonator and parallel microstrip feed line is proposed to achieve compact dielectric size and filtering response without gain reduction. The compact dielectric size is contributed by the dielectric strip resonator with high permittivity operated in the TMδ1 cavity mode, whose electric field distribution along the short side is far less than half‐wavelength distribution. Therefore, the size of the proposed dielectric strip resonator is smaller than the traditional dielectric patch resonator operated in the TM11 cavity mode. Additionally, the parallel placed microstrip line not only can excite the dielectric strip resonator for filtering response without gain reduction, but also can provide one upper‐edge radiation null for frequency selectivity enhancement. Compared with the reported filtering dielectric antennas, the proposed design exhibits the features of compact dielectric size, simple structure and wide stopband. For demonstration, one prototype operating at 4.9 GHz is fabricated, achieves the dielectric size of 0.00078 λ3 0 (λ0 is the wavelength in the free space at the center frequency), the measured peak gain of 7.1 dBi, the 10‐dB impedance matching bandwidth of 4%, the stopband (> 16 dB) up to 1.84 f0, and the cross‐polarization level of 20 dB within 3‐dB beam range.  相似文献   

15.
A wideband omnidirectional monopolar patch antenna merged multi‐mode with a simple structure is proposed in this article. The antenna consists of a circular patch and a concentric annular ring, which is coupled‐fed by a T‐shape monopole at its center. A wideband performance is achieved by converging multi‐mode: TM02 mode of the circular patch, TM02 mode of the annular ring and monopole mode of the T‐shape monopole. The measured results show that the proposed antenna has an impedance bandwidth of 55.3% from 4.45GHz to 7.85GHz. All of the three resonant modes lead to conical radiation patterns in the elevation plane and omnidirectional radiation patterns in the azimuth plane, and the measured peak gain varies from 6.1 to 10 dBi within the operating band, which verifies it can be a good choice for indoor wireless communication systems.  相似文献   

16.
A compact monopolar microstrip patch antenna (MPA) with enhanced‐bandwidth is proposed. In order to achieve the miniaturized patch, the zeroth‐order mode of the MPA instead of its higher‐order modes is employed at first by loading the shorting pin around the center of the patch. After that, a L‐shaped microstrip line with a shorting pin is introduced at the periphery of the patch radiator to excite an additional non‐radiative mode for bandwidth enhancement. In final, the proposed MPA is fabricated and measured. The results illustrate that the antenna generates an enhanced‐bandwidth of about 4.1% ranging from 2.39 to 2.49 GHz, which is significantly larger than that of the traditional MPA around 1%. Meanwhile, the dimensions of the radiating patch are obviously decreased down due to the employment of zeroth‐order mode, which are kept as small as about 0.17 λ0 × 0.22 λ0 × 0.026 λ0 (λ0 is the free‐space wavelength).  相似文献   

17.
In this article, a novel linear mmWave antenna array with series‐feed network is proposed to enhance the bandwidth and reduce sidelobe level without increasing the patch size. The proposed linear array is consisted of four identical wideband array elements, which are all under operation TM10 and TM02 modes by loading shorting pin and rectangular slots. Additionally, through loading symmetry circle‐shaped slots for the four elements, impedance matching of linear array is achieved. Furthermore, multi‐parameters unified‐optimization (MPUO) based on imperial competition algorithm (ICA) is proposed to uniformly optimize all linear array parameters. To verify this design, the proposed linear array is fabricated with a small patch area of 7.5 × 3.914 × 0.254 mm3. The measured results show that the bandwidth is enhanced to 2.05GHz, which is 0.57GHz wider than that of simulation. The simulated peak gain reaches 13dBi while the sidelobe level is reduced to about ?19 dB at 28.6GHz. Moreover, the computation cost using MPUO is reduced by 98.12% compared with that of independent parameters optimization.  相似文献   

18.
A square dielectric patch (DP) resonator fusing with the bottom substrate is studied for designing low‐profile circularly polarized (CP) antenna. Based on the theoretical investigation using the constructed analysis model, it can be found that the proposed DP resonator possesses a pair of degenerate dominate modes (TM101 and TM011), which can be split by introducing perturbations on the DP resonator and then used to design CP antenna fed by a microstrip line directly. To verify the proposed idea, a 2 × 2 array fed by a dual Marchand balun network is designed and implemented. Reasonable agreement between the measured and simulated results is observed. Experimental results show that a measured impedance bandwidth is 380 MHz (5.18‐5.56 GHz) for |S11| < ?10 dB and the 3‐dB axial ratio bandwidth is 90 MHz (5.32‐5.41 GHz). The measured gain is up to 11.77 dBic with a cross polarization of about ?20 dB in the boresight direction.  相似文献   

19.
A wide‐angle scanning circularly polarized (CP) leaky‐wave antenna (LWA) with suppressed side‐lobe levels (SLLs) is proposed, which can be a good candidate for future radar and wireless communication systems. The LWA consists of 12 cross slotted elliptical patch elements, which are fed by a microstrip spoof surface plasmon polariton (SSPP) line. Two fundamental modes of the patch array with two orthogonal polarizations can be excited by the electromagnetic coupling between the array and the SSPP line. By optimizing the elliptical eccentricity e and etching cross slots on the elliptical patch array, a 90° phase difference is introduced, and then, the CP radiation is realized. A tapered aperture field distribution is also realized by adjusting coupling intensities between the patch elements and the SSPP line, which is beneficial to reduce the SLLs. The electrical size of the LWA is 1.29λ0 × 6.02λ0 × 0.08λ0, where λ0 is air wavelength at 12.9 GHz (broadside direction). Both the simulated and measured results indicate that the CP operating band is 12.0 to 15.0 GHz. The proposed CP LWA scans continuously from ?14° to 38°. In the whole operating band, the axial ratios are less than 3 dB, and the SLLs are less than ?20 dB as well.  相似文献   

20.
This article presents a triple‐slotted substrate integrated cavity (SIC)‐fed 2 × 2 metasurface antenna. Three modes can be obtained including TM10 mode of the metasurface, TE210, mode and TE310 mode of the SIC. The TE210 mode of SIC radiates through the two side slots and is coupled to the metasurface mainly by the two side slots, while the TE310 mode of SIC is mainly coupled to the metasurface by the middle slot. Comparing with the reported SIC‐backed slot antenna, dual‐slotted SIC‐fed patch antenna or the metasurface antenna, the proposed antenna exhibits the advantage of wide bandwidth with flat gain. One prototype operated at 10 GHz was fabricated and measured with 10‐dB fractional bandwidth of 33%, the gain of 8.1 dBi at the center frequency, the cross polarization level of 20 dB and the gain ripple of 1.5 dB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号