首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the present study, experimental and analytical thermal performance of automobile radiator using nanofluids is investigated and compared with performance obtained with conventional coolants. Effect of operating parameters and nanoparticle concentration on heat transfer rate are studied for water as well as CuO/EG‐water based nanofluid analytically. The results are presented in the form of graphs showing variations of net heat transfer rate for various coolant flow rate, air velocity, and source temperature for various CuO/EG‐water based nanofluids. Experimental results indicate that with the increase in coolant flow rate and air velocity, heat transfer rate increases, reaches maximum and then decreases. Experimental investigation of a radiator is carried out using CuO/EG‐water based nanofluids. Results obtained by experimental work and analytical MATLAB code are almost the same. Maximum absolute error in water and air side is within 12% for all flow condition and coolant fluids. Nusselt number of nanofluid is calculated using equation number 33[9]. The results obtained from experimental work using 0.2% volume CuO/EG‐water based nanofluids are compared with the results obtained from MATLAB code. The results show that the maximum error in the outlet temperature of the coolant and air is 12% in each case. Thus MATLAB code can be used for different concentration of nanofluids to study the effect of operating parameters on heat transfer rate. Thus MATLAB code developed is valid for given heat exchanger applications. From the results obtained by already validated MATLAB code, it is concluded that increase in coolant flow rate, air velocity, and source temperature increases the heat transfer rate. Addition of nanoparticles in the base fluid increases the heat transfer rate for all kind of base fluids. Among all the nanofluid analyzed in this study, water‐based nanofluid gives highest value of heat transfer rate and is recommended for the heat exchanger applications under normal operating conditions. Maximum enhancement is observed for ethylene glycol‐water (4:6) mixture for 1% volume concentration of CuO is almost equal to 20%. As heat transfer rate increases with the use of nanofluids, the heat transfer area of the radiator can be minimized.  相似文献   

2.
对气流横掠螺旋翅片管错列管束的流动与换热特性进行了数值研究,在雷诺数Re=10 000~40 000范围比较了四类(连续型、平齿I型、平齿L型和扭齿型)螺旋翅片管束的换热、阻力及热力综合性能。结果表明:与常规的连续型管束相比,在相同Re下,平齿I型、平齿L型和扭齿型管束的努塞尔数Nu分别提高约24%、32%和38%,欧拉数Eu分别增大约24%、85%和90%;在相同的换热量、流体输运功耗和翅片管结构参数下,平齿I型、平齿L型和扭齿型管束所需的换热面积较之连续型管束所需的分别减小约9%、6%和12%,扭齿型表现最佳;在管束紧凑性方面,连续型、平齿I型和扭齿型管束无明显差别,但选用平齿L型会使管束体积相对增大约18%。  相似文献   

3.
In this article, experimental analysis is done on shell‐and‐tube heat exchanger of a marine vessel for removal of fouling using optimum surface‐cleaning techniques. The main objective is to compare the performance of the heat exchanger before and after maintenance. Two identical deteriorated systems of heat exchangers are taken and real‐time analysis is conducted. The log data are taken before and after undergoing maintenance for the two systems. Two different cleaning techniques are used, namely, chemical cleaning and mechanical cleaning. Detailed calculations are made for the shell‐and‐tube heat exchanger. From the obtained data, comparisons are made for different parameters on the tube side such as friction factor, heat transfer coefficient and pressure drop, as well as total heat transfer rate on the shell side. From the analysis and comparison, it was found that greater heat transfer takes place for the tubes cleaned using the chemical cleaning method than for tubes cleaned by the mechanical cleaning method. Pressure drop is found to be less for chemical cleaning method than mechanical cleaning method. This indicates that the fouling effect is reduced for tubes cleaned by the chemical cleaning method, and furthermore these tubes remain corrosion‐resistant for longer periods of time.  相似文献   

4.
The present work submits an experimental work on the heat transfer and friction loss characteristic, employing a tube finned heating surface kept at a constant temperature in a rectangular channel. The tube fins attached on the surface (o.d.=29 mm) were arranged as either in‐line or staggered. The parameters for the study were Reynolds number (3700–30 000), depending on hydraulic diameter, the distance between the tube fins in the flow direction (Sy/D=1.72–3.45) and the fin arrangement. The change in the Nusselt number with these parameters was determined. For both tube fin arrangements, it was observed that increasing Reynolds number increased Nusselt number, and maximum heat transfer occurred at Sy/D=2.59. Thermal performances for both arrangements were also determined and compared with respect to heat transfer from the same surface without fins. With staggered array, a heat transfer enhancement up to 25 per cent for Sy/D=3.45 in staggered array was achieved in constant pumping power. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
利用测量不确定度的方法对不同单管在蒸发和冷凝工况时的性能进行对比。分别给出了单管蒸发和冷凝传热过程中综合传热系数、管内传热系数和管外传热系数的数学模型,并在此基础上研究3个传热系数以及相关参数的不确定度评定方法。分别以蒸发和冷凝工况为实例,得出3个传热系数的不确定度及其分量,从而得出影响不确定度的因素,进而为减小测量不...  相似文献   

6.
Cryocoolers are devices that are capable of achieving and maintaining cryogenic temperatures for a number of applications such as high‐energy physics, cooling of superconducting magnets, sensors, high‐vacuum production, cryotronics, cryonics, and so on. All the above applications need coolers with high reliability, efficiency, low maintenance, and low cost. The absence of moving parts at the cryogenic temperatures makes the pulse tube (PT) coolers quite suitable for the above applications. In spite of considerable developments in the area of PT cryocoolers, many of the fundamental processes responsible for the cold production are not fully understood. In this work, we present the results of numerical simulations of two‐stage pulse tube refrigerators (PTR) using adiabatic flow of gas through the pulse tube system. A two‐stage PTR is the improved version of single‐stage system to achieve temperature close to 4 K. Assuming adiabatic gas flow through PTs, the algebraic equations for pressure, mass flow, and volumes at different locations have been derived and solved by a MATLAB based program. Using the above, the performance of PTR has been optimized for different operational parameters. The cooling powers predicted by the model have been compared with the experimental data, and they are in good agreement with each other.  相似文献   

7.
采用CFD软件对氦气冲刷螺旋管束的传热特性进行了数值模拟。计算时采用了轴对称简化模型;湍流模拟采用低Re k-ε模型。通过与实验数据对比,发现低Re模型比壁面函数法更适合计算冲刷管束类型的流动。计算结果表明,顺排管束前几层平均Nu高于叉排管束,而深层管平均Nu低于叉排管束;管列距离较大时排列方式对深层管的传热影响很小;管束与边界距离约为管束中心部分氦气流道宽度的一半时,各列传热管传热和氦气出口温度都较为均匀;管束横向位置发生偏移将导致管束内流动、传热出现不均匀。结果对于螺旋管蒸汽发生器设计具有参考意义。  相似文献   

8.
CFD analysis on a flat tube with semi-circular fins under laminar flow conditions was performed with graphene-based nanofluids considering the nanofluids as incompressible. Different simulations were performed at four different concentrations of nanofluids (0.01%, 0.1%, 0.2%, and 0.4%) and at different volume flow rates (4, 6, 8, and 10 LPM) and at four different forced convective heat transfer coefficients at different wind velocities at 300 K (50, 100, 150, and 200 W/m2 K). It was observed that with an increase in the concentration of nanoparticles in nanofluids, the thermal conductivity of base fluid water was increased (at 353 K the nanofluid of 0.4% volume concentration, the thermal conductivity of nanofluid increased by 200% with respect to base fluid). Graphene-based nanofluids have higher effectiveness than most nanofluids hence it is considered for the analysis, at 0.4% concentration of nanofluid the effectiveness observed was 36.84% at 4 LPM, and for water, the effectiveness was 28.22% under similar conditions. The effect of flow rate on temperature drop was significant. At 4 LPM and at 0.4% of nanofluid, an outlet coolant temperature of 333 K was observed whereas the water outlet temperature at 10 LPM is 346.13 K. The effect of forced convective air heat transfer coefficient was significantly high. At h = 50 W/m2 K the outlet temperature of 0.4% nanofluid at 4 LPM was 345.25 K and at h = 200 W/m2 K, the outlet coolant temperature was 333.47 K. A single tube of the radiator was considered for the analysis whereas the original radiator consists of 50 tubes due to problems of Ansys in meshing.  相似文献   

9.
为深入研究液膜内的微观传热机理,对水平管外降膜蒸发的传热特性进行了数值模拟,获得了液膜厚度、液膜流动速度和传热系数等热力参数在液膜内的分布特性。通过与实验数据的对比验证了数学模型的准确性。研究结果表明:在饱和蒸发温度62℃、传热温差2.8℃、管外径25.4mm和液膜入口速度0.071~0.15 m/s条件下,沿圆周方向,液膜厚度减小,传热系数增加,直至达到液膜热力发展区,膜厚和传热系数趋于稳定;受液膜内温度变化的影响,液膜内的粘度、表面张力和导热系数的变化对液膜传热特性产生显著影响。  相似文献   

10.
A new heat transfer enhanced tube—the inside and outside spirally triangle finned tube with small spiral angles (IOSTF tube)—was developed and manufactured for improving the performance of high‐pressure preheaters. The triangle flutes with small spiral angle on the outside surface of the IOSTF tube perform like the vertically fluted tube, and the triangle flutes with small spiral angle on the inside surface of the IOSTF tube perform like the spirally fluted tube. The experiments show that the total heat transfer coefficient of the vertical IOSTF tube is 63–95 per cent larger than that of the smooth tube with only a slight increase in the inside flowing friction and the field results show that a 43 per cent increase in the total heat transfer coefficient of the high‐pressure preheater with the IOSTF tubes can be obtained. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

11.
Among the heat exchangers (HE), the shell and tube type is being widely used in different applications like oil, chemical, and power plant Industries. The incorporation of segmental baffles (SB) improves the HE capacity from higher temperature fluid to lower temperature fluid. Nanofluids can be effectively used to enhance the heat transfer rate. In this study, numerical simulations have been carried out in a shell and tube heat exchanger (STHX). Among HE design methods, Tubular Exchanger Manufacturers Association (TEMA) standard is being used for better design by many researchers. In this paper, the computational fluid dynamics analysis was carried out with Al2O3, CuO, and SiO2 nanofluids amid 1, 3, and 5 vol. % with water emulsion to enhance the heat transfer coefficient of STHX. The nanofluid has been used in the cold fluid of the HE and on the other side hot water is used. From the results, it is noticed that with the increase of Nanofluids, the value of heat transfer coefficients is found to be increasing. The overall heat transfer coefficient has been enhanced for Al2O3, CuO, and SiO2 about 10.41%, 12.27%, and 9.56%, respectively, at 0.22 kg/s for the 5 vol. % addition. It is also depicted that the pressure drop is increasing with the incorporation of nanofluids.  相似文献   

12.
余热锅炉管口区传热的数值分析   总被引:1,自引:0,他引:1  
应用高温换热设备管口传热分析系统针对某天然气化工厂二次转化气余热锅炉管口区传热问题建立了物理、数学模型,进行了相应的数值分析。数值计算结果表明,新型双瓷管保护结构改善了管口区的传热性能。降低了余热锅炉管口区金属材料的温度,减缓了高温腐蚀反应速度;新型双瓷管保护结构同时改善了管口区域内保护套管的温度“畸变”,因而减轻管口区材料的热应力破坏。  相似文献   

13.
Generally, internal micro‐fin tubes are used for increasing the life and performance of electronic devices. The micro‐fins enhance the heat transfer rate by increasing the surface area with an increase of the pressure drop. In this study, heat transfer and pressure drop are analyzed by varying Reynolds number with the increase in the number of fins in tubes. Heat transfer and pressure drop, together with turbulence kinetic energy of micro‐fin tubes (helical and straight) and a smooth tube, have been evaluated for different Reynolds numbers (60 000, 40 000, 20 000, and 2000) at a constant temperature of 350 K, which clearly establishes laminar to turbulent flow. It is observed that the helical micro‐fin tube has a better result compared with the straight micro‐fin tube and smooth tube at Reynolds numbers 60 000, 40 000, and 20 000 at velocity 2, 1, and 0.5 m/s, respectively. This study is an attempt to establish a comparison of different micro‐fin geometries with varying Reynolds numbers, concluding that a high Reynolds number is suitable for the same.  相似文献   

14.
The behavior of a prism‐shaped solar collector with a right triangular cross sectional area is investigated numerically. The water‐CuO nanofluid is taken as the functioning liquid through the solar collector. The leading differential equations with boundary conditions are solved by the penalty finite element method using Galerkin's weighted residual scheme. The performance of parameters in terms of temperature, mass, velocity distributions, radiative, convective heat and mass transfer, mean temperature and concentration of nanofluid, mid height horizontal‐vertical velocities, and sub‐domain average velocity field are investigated systematically. These parameters include the Rayleigh number Ra and the solid volume fraction φ. The outcome explains that the performance of the solar collector can be enhanced with the largest Ra and φ. The code validation shows excellent concurrence with the hypothetical outcome obtainable in the literature. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library (wileyonlinelibrary.com/journal/htj). DOI 10.1002/htj.21039  相似文献   

15.
基于Nusselt凝结传热理论,沿肋片管圆周方向划分有限个微元角,建立了每个微元角内肋侧壁、肋间基管及肋顶三个区域的凝结传热模型,通过求解非淹没区和淹没区总传热量,推导管外平均传热系数计算式。计算不同肋片高度、肋密度时,R134a饱和蒸汽的管外平均凝结传热系数。结果表明:随肋密度的增加,平均传热系数先增大后减小,肋密度为25fpi时传热最佳;高肋片管的平均凝结传热系数大于低肋片管的,肋片高度达到一定值时,平均传热系数几乎不随肋高增加而增加。当R134a饱和蒸汽为20℃时,两种不同翅片密度的管外平均凝结传热系数随温差的增大而减小,并通过所建模型得到的计算值与Beatty-Kate模型进行了比较,平均误差分别为约16.1%和8.3%,故所建模型基本反映肋片管外蒸汽凝结传热机理。  相似文献   

16.
In this paper, 3-dimensional numerical simulation of steady natural convective flow and heat transfer are studied in a single-ended tube with non-uniform heat input. Apart from some other applications, it serves as a simplified model of the single-ended evacuated solar tube of a water-in-glass evacuated tube solar water heater. It is assumed that the sealed end of tube to be adiabatic and also the tube opening to be subjected to copper–water nanofluid. Governing equations are derived based on the conceptual model in the cylindrical coordinate system. The governing equations have been then approximated by means of a fully implicit finite volume control method (FVM), using SIMPLE algorithm on the collocated arrangement. The study has been carried out for solid volume fraction 0 ≤ φ ≤ 0.05 and maximum heat flux 100 ≤ qm ≤ 700. Considering that the driven flow in the tube is influenced by the dimensions and the inclination angle of the solar tube, the flow patterns and temperature distributions are presented on different cross sectional planes and longitudinal sections, when the tube is positioned at different orientations.  相似文献   

17.
To meet the requirements of development in heat exchangers design, the effect of different tubes geometrical parameters on its flow field analysis and thermal heat transfer performance are investigated in the current research work. The hydraulic thermal fluid coupling with computational simulations is applied. The numerical results are solving used flow transport and heat transfer equations, then these results are validated with available experimental data. The behavior of hydraulic and thermal flow in the corrugated tube is discussed with different geometrical parameters' position and shape. Turbulent flow in the tube is calculated in three-dimensional numerical simulations with optimization of a multiobjective algorithm are analyzed. The influences of various design parameters, for instance, the number of corrugated rings around the tube, distance between each corrugated ring, the diameter of the ring, and pitch of ring are investigated firstly in the flow field and then optimized by using the design of experiment (DOE). The influence of flow structural modifications such as static pressure, dynamic pressure, and pressure drop is taken into consideration as analyzed performance parameters. The DOE method is investigated based on implements and variances the L16 orthogonal arrays are chosen as the experimental strategy. Furthermore, the optimization results found that the maximum value of pressure difference was for corrugated diameter. The numerical method using DOE has enhanced heat transfer rate as compared to the smooth pipe. Moreover, the minimum Tout is for Case 11 (296.49°C) and the maximum Tout is for (303.10°C) hence the value of Nu number for both cases is 32.9 and 42, respectively. That means using this type of passive device can improve the heat transfer in the pipe. The outcomes illustrate that the performance evaluation factor (PEF) ratio of the corrugated pipe with different geometrical configurations is changed and increased as the corrugated pipe geometrically changed and the value of PEF is more than 1.3.  相似文献   

18.
多管程平行流微通道冷凝器的管程设计方案对换热器管内热力性能影响较大。但目前一直尚未有对其管内换热系数和压降进行理论预测的较为简单可行方法。本文针对各管程工质流量可变,平均干度可变的多管程平行流冷凝器管内热力参数提出一种分程计算方法:在假设管壁温度不变及同管程内流量均匀分配的前提下,采用了Koyama与Wang冷凝换热模型,以及Zhang和Koyama提出的摩擦压降模型,建立了壁温与热流量之间的关系式,通过迭代求得管内平均换热系数和压降的理论值。以一个商用R134a、流程分配为12-8-8-6微通道冷凝器作为示例,用理论和实验方法分别得到了其管内冷凝平均换热系数和压降。结果表明,二者的偏差均落在30%以内。其中Koyama和Zhang 提出的模型预测偏差较小,分别为-4.96%~11.31%,0.42%~25.14%。  相似文献   

19.
In an actual boiling channel, e.g., a boiler water‐tube, the circumferential heat flux is not uniform. Thus, the critical heat flux (CHF) of a non‐uniformly heated tube becomes an important design factor for conventional boilers, especially for a compact water‐tube boiler with a tube‐nested combustor. A small compact boiler is operated under low‐pressure and low‐mass‐flux conditions compared with a large‐scale boiler, thus the redistribution of liquid film strongly affects the characteristics of CHF. In this investigation, non‐uniform heat flux distribution along the circumferential direction was generated by using the Joule heating of SUS304 tubes with the wall thickness distribution. The heated length of test‐section was 900 mm with an inner diameter of 20 mm and an outer diameter of 24 mm. The center of the inner tube surface was shifted by ε=0, 0.5, 1.0, 1.5 mm from the center of the outer tube surface. The heat flux ratio between maximum and minimum heat flux of these tubes corresponded to 1.0, 1.7, 3.0, and 7.0, respectively. The experimental conditions were as follows: system pressure at 0.3 and 0.4 MPa, mass flux of 10–100kg/(m2s), inlet temperatures at 30° and 80°. The experimental results showed an increase in the critical heat flux substantiated by the existence of the redistribution of the flow. These characteristics are explained by using a concept similar to that of Butterworth's spreading model. © 2005 Wiley Periodicals, Inc. Heat Trans Asian Res, 35(1): 47–60, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20095  相似文献   

20.
In the present empirical work, the effectiveness of a finned annular tube in the presence of Ag/oil nanofluid is investigated. An annular tube with axial fins was considered as the test case. Suspended Ag nanoparticles in different volume concentrations of 0.011%, 0.044%, and 0.176% were examined in this work. The setup was designed in a way to be sure that the flow is hydrodynamically fully developed along the tube. This experiment has been done in a laminar flow regime in which Reynolds number was less than 160 for all the studied cases. The finned annular tube was wrapped with a coil that satisfied the condition of a constant thermal flux rate of 204 W on the outer boundary. Based on the acquired data, the convective heat transfer coefficient was obtained for all the nanofluid cases and compared to the base fluid. It was observed that the convective heat transfer coefficient substantially rises by increasing the nanoparticles. Which for the best case (volume concentration of 0.171% and Reynolds number of about 160), this factor was about a 33% enhancement compared to the base fluid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号