首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
复合相变换热技术是一种回收锅炉排烟余热的新型技术,其壁温可控可调,具有防止烟气侧低温腐蚀的突出优势.介绍了宝钢采用该技术回收利用本厂内一台低压锅炉排烟余热生产生活热水的节能项目,该项目于2013年5月投运,至今运行良好.运行结果表明,该复合相变换热器可使锅炉排烟温度由194℃降至138℃,同时获得90℃热水19.1 t·h-1.通过实施该节能项目可回收烟气余热约1 400 k W,年节约标准煤约1 300 t,推进了宝钢节能减排.  相似文献   

2.
The experiment was conducted to investigate the heat transfer performance of wet flue gas in a vertical tube. The factors influencing the convective condensation of wet flue gas were experimentally investigated. The measured results indicate that the convective heat transfer of bulk flow and condensation heat transfer of vapor have significant contribution to the total heat transfer and the dominant transport mechanism is dependent upon the vapor fraction in mixture.  相似文献   

3.
The exhaust gas from an internal combustion engine carries away about 30% of the heat of combustion. The energy available in the exit stream of many energy conversion devices goes as waste, if not utilized properly. The major technical constraint that prevents successful implementation of waste heat recovery is due to its intermittent and time mismatched demand and availability of energy. In the present work, a shell and finned tube heat exchanger integrated with an IC engine setup to extract heat from the exhaust gas and a thermal energy storage tank used to store the excess energy available is investigated in detail. A combined sensible and latent heat storage system is designed, fabricated and tested for thermal energy storage using cylindrical phase change material (PCM) capsules. The performance of the engine with and without heat exchanger is evaluated. It is found that nearly 10–15% of fuel power is stored as heat in the combined storage system, which is available at reasonably higher temperature for suitable application. The performance parameters pertaining to the heat exchanger and the storage tank such as amount of heat recovered, heat lost, charging rate, charging efficiency and percentage energy saved are evaluated and reported in this paper.  相似文献   

4.
In this paper, turbulence heat transfer and nanofluid flow in a shell and corrugated coil tube heat exchanger are evaluated numerically. The three-dimensional numerical simulations have been done by finite volume method using a commercial computational fluid dynamics code. The spatial discretization of mass, momentum, turbulence dissipation rate, and turbulence kinetic energy equations has been achieved by a second-order upwind scheme. A SIMPLE algorithm has been used for velocity–pressure coupling. To calculate gradients, Green-Gauss cell-based method has been utilized. The cross-section of the coil tube is lobe shaped. First, the impact of corrugated tube cross-section type and then, the impact of utilizing different types of nanofluid on thermal performance are investigated. The outcomes indicate that at high Reynolds number, utilizing a five-lobe cross-section causes augmentation in Nusselt number and pressure drop by about 4.8% and 3.7%, respectively. However, the three-lobe type shows the highest thermal performance. Moreover, water/CuO has the most thermal performance. As the volume concentration of the nanofluid increases, the thermal performance declines.  相似文献   

5.
The augmentation of convective heat transfer in a single-phase turbulent flow by using helically corrugated tubes has been experimentally investigated. Effects of pitch-to-diameter ratio (P/DH = 0.18, 0.22 and 0.27) and rib-height to diameter ratio (e/DH = 0.02, 0.04 and 0.06) of helically corrugated tubes on the heat transfer enhancement, isothermal friction and thermal performance factor in a concentric tube heat exchanger are examined. The experiments were conducted over a wide range of turbulent fluid flow of Reynolds number from 5500 to 60,000 by employing water as the test fluid. Experimental results show that the heat transfer and thermal performance of the corrugated tube are considerably increased compared to those of the smooth tube. The mean increase in heat transfer rate is between 123% and 232% at the test range, depending on the rib height/pitch ratios and Reynolds number while the maximum thermal performance is found to be about 2.3 for using the corrugated tube with P/DH = 0.27 and e/DH = 0.06 at low Reynolds number. Also, the pressure loss result reveals that the average friction factor of the corrugated tube is in a range between 1.46 and 1.93 times over the smooth tube. In addition, correlations of the Nusselt number, friction factor and thermal performance factor in terms of pitch ratio (P/DH), rib-height ratio (e/DH), Reynolds number (Re), and Prandtl number (Pr) for the corrugated tube are determined, based on the curve fitting of the experimental data.  相似文献   

6.
Extended surfaces mostly aim to improve the heat transfer upon increasing the area of heat transfer. In this paper, the influence of using fins on flow behaviors and the heat transfer of the shell and tube heat exchanger has been investigated. In this regard, the present results are verified with available experimental data in the literature for a helical tube without fins. The effects of fin density (fin per inch), its height, and material have been studied on the heat transfer rate. In addition, the effects of radial pitch and the number of coil loops are studied. The results indicate that implementing extended surfaces significantly increases the heat transfer rate. The increase of fin density from 8 to 12 and the height from 11.5 to 13.5 mm enhances heat transfer up to 48% and 43% depending on Dean number, respectively. The rise of coil pitch augments the overall heat transfer, and it is more efficient at lower Dean numbers. The predicted results also show that the fin material does not have any significant effect on heat transfer.  相似文献   

7.
董其伍  刘敏珊  李燕 《节能》2006,25(2):19-21
根据各种管束支撑结构的特点,找出与之相适应的波纹管管型,分析不同的组合结构对波纹管换热器壳程性能的影响,指出对波纹管换热器进行优化设计和实现整体强化传热的途径。  相似文献   

8.
当前我国的能源形势紧张,能源利用状况令人担忧.在一些高耗能的企业,工业生产中排放的中低温烟气余热由于回收难度高、回收成本大等问题,一直得不到合理的利用,如何合理回收成为亟待解决的难题之一.简要介绍了一种新型余热利用换热设备——径向热管换热器,提出了计算热管换热器经济性评价指标的方法,并以某工厂低温烟气余热回收工程为实例,对烟气余热的回收利用进行了技术和经济效益分析.实践应用证明,径向热管换热器在工业低温烟气余热回收中有很好的实用性和可行性.  相似文献   

9.
降低燃气锅炉排烟热损失方法探讨   总被引:4,自引:0,他引:4  
燃用天然气的锅炉其排烟温度较高,除带走大量显热之外,烟气中还存在大量水蒸汽的潜热,若将这两部分热量充分回收,则将大幅度提高锅炉热效率。文章在对天然气的燃烧特性计算的基础上,分析燃气锅炉烟气潜热回收的效果和需要解决的问题。  相似文献   

10.
The purpose of this work is to investigate gas to liquid heat transfer performance of concentric tube heat exchanger with twisted tape inserted corrugated tube and to evaluate its impact on engine performance and economics through heat recovery from the exhaust of a heavy duty diesel generator (120 ekW rated load). This type of heat exchanger is expected to be inexpensive to install and effective in heat transfer and to have minimal effect on exhaust emissions of diesel engines. This type of heat exchanger has been investigated for liquid to liquid heat transfer at low Reynolds number by few investigators, but not for gas to liquid heat transfer. In this paper, a detail of heat transfer performance is investigated through simulations using computer software. The software is first justified by comparing the simulation results with the developed renowned correlations. Simulations are then conducted for concentric tube heat exchanger with different twisted tape configuration for optimal design. The results show that the enhancement in the rate of heat transfer in annularly corrugated tube heat exchanger with twisted tape is about 235.3% and 67.26% when compared with the plain tube and annularly corrugated tube heat exchangers without twisted tapes respectively. Based on optimal results, for a 120 ekW diesel generator, the application of corrugated tube with twisted tape concentric tube heat exchanger can save 2250 gal of fuel, $11,330 of fuel cost annually and expected payback of 1 month. In addition, saving in heating fuel also reduces in CO2 emission by 23 metric tons a year.  相似文献   

11.
In this paper, the new approach of constructal theory has been employed to design shell and tube heat exchangers. Constructal theory is a new method for optimal design in engineering applications. The purpose of this paper is optimization of shell and tube heat exchangers by reduction of total cost of the exchanger using the constructal theory. The total cost of the heat exchanger is the sum of operational costs and capital costs. The overall heat transfer coefficient of the shell and tube heat exchanger is increased by the use of constructal theory. Therefore, the capital cost required for making the heat transfer surface is reduced. Moreover, the operational energy costs involving pumping in order to overcome frictional pressure loss are minimized in this method. Genetic algorithm is used to optimize the objective function which is a mathematical model for the cost of the shell and tube heat exchanger and is based on constructal theory. The results of this research represent more than 50% reduction in costs of the heat exchanger.  相似文献   

12.
In recent years the requirement for reduction of energy consumption has been increasing to solve the problems of global warming and the shortage of petroleum resources. A latent heat recovery type heat exchanger is one of the effective methods of improving thermal efficiency by recovering latent heat. This paper described the heat transfer and pressure loss characteristics of a latent heat recovery type heat exchanger having a wing fin (fin pitch: 4 mm, fin length: 65 mm). These were clarified by measuring the exchange heat quantity, the pressure loss of heat exchanger, and the heat transfer coefficient between outer fin surface and gas. The effects of condensate behavior in the fins on heat transfer and pressure loss characteristics were clarified. Furthermore, the equations for predicting the heat transfer coefficient and pressure loss which are necessary in the design of the heat exchanger were proposed. ©2007 Wiley Periodicals, Inc. Heat Trans Asian Res, 36(4): 215–229, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20154  相似文献   

13.
Heat transfer enhancement of multi-walled carbon natube(MWNT)/water nanofluid in a horizontal shell and tube heat exchanger has been studied experimentally. Carbon nanotubes were synthesized by the use of catalytic chemical vapor deposition (CCVD) method over Co–Mo/MgO nanocatalyst. Obtained MWNTs were purified using a three stage method. COOH functional groups were inserted for making the nanotubes hydrophilic and increasing the stability of the nanofluid. The results indicate that heat transfer enhances in the presence of multi-walled nanotubes in comparison with the base fluid.  相似文献   

14.
板翅式换热器在燃气轮机进气冷却系统中的应用   总被引:1,自引:0,他引:1  
将板翅式换热器应用于吸收式燃气轮机进气冷却系统中,降低燃气轮机压缩机进口温度,提高燃气轮机高温条件下的出力,在国内尚无先例。针对板翅式换热器,简要介绍了结构、布置形式和性能。通过实测的运行数据,对板翅式换热器和管式换热器的性能进行了对比。结果表明:板翅式换热器在传热系数、体积、进气阻力等方面,性能优于管式换热器,是一种值得发展的换热设备。最后提出了该板翅式换热器在实际应用中存在的一些问题及对应的处理方法。  相似文献   

15.
Tube–tube heat exchanger (TTHE) is a low cost, vented double wall heat exchanger which increases reliability by avoiding mixing of fluids exchanging heat. It can be potentially used for heat recovery from engine cooling circuit, oil cooling, desuperheating in refrigeration and air conditioning, dairy, and pharmaceutical industry, chemical industry, refinery, etc. These tube–tube heat exchangers are successfully demonstrated for superheat recovery water heating applications, condenser and evaporator in heat pumps, lube oil cooler for shipboard gas turbines, milk chilling and pasteurizing application. This paper presents an experimental study on various layouts of TTHE for water-to-water heat transfer. The theoretical and experimental results on this type of heat exchanger configuration could not be located in literature. Overall heat transfer coefficient and pumping power were experimentally determined for a fixed tube length and surface area of serpentine layouts with different number of bends and results are compared with straight tube TTHE. In the case investigated, serpentine layout TTHE with seven bends has shown optimum performance, with overall heat transfer coefficient 17% higher than straight tube TTHE. Two out of five serpentine layout TTHE have shown poor heat transfer performance than straight tube TTHE. The experimental results also indicate that there is a definite optimum for a number of bends in serpentine layout TTHE. An analytical model for prediction of thermo-hydraulic performance of straight layout has been developed and validated experimentally.  相似文献   

16.
Among the heat exchangers (HE), the shell and tube type is being widely used in different applications like oil, chemical, and power plant Industries. The incorporation of segmental baffles (SB) improves the HE capacity from higher temperature fluid to lower temperature fluid. Nanofluids can be effectively used to enhance the heat transfer rate. In this study, numerical simulations have been carried out in a shell and tube heat exchanger (STHX). Among HE design methods, Tubular Exchanger Manufacturers Association (TEMA) standard is being used for better design by many researchers. In this paper, the computational fluid dynamics analysis was carried out with Al2O3, CuO, and SiO2 nanofluids amid 1, 3, and 5 vol. % with water emulsion to enhance the heat transfer coefficient of STHX. The nanofluid has been used in the cold fluid of the HE and on the other side hot water is used. From the results, it is noticed that with the increase of Nanofluids, the value of heat transfer coefficients is found to be increasing. The overall heat transfer coefficient has been enhanced for Al2O3, CuO, and SiO2 about 10.41%, 12.27%, and 9.56%, respectively, at 0.22 kg/s for the 5 vol. % addition. It is also depicted that the pressure drop is increasing with the incorporation of nanofluids.  相似文献   

17.
Heat pipes and two-phase thermosyphon systems are passive heat transfer systems that employ a two-phase cycle of a working fluid within a completely sealed system. Consequently, heat exchangers based on heat pipes have low thermal resistance and high effective thermal conductivity, which can reach up to the order of (105 W/(m K)). In energy recovery systems where the two streams should be unmixed, such as air-conditioning systems of biological laboratories and operating rooms in hospitals, heat pipe heat exchangers (HPHEs) are recommended. In this study, an experimental and theoretical study was carried out on the thermal performance of an air-to-air HPHE filled with two refrigerants as working fluids, R22 and R407c. The heat pipe heat exchanger used was composed of two rows of copper heat pipes in a staggered manner, with 11 pipes per row. Tests were conducted at different airflow rates of 0.14, 0.18, and 0.22 m3/h, evaporator inlet-air temperatures of 40, 44, and 50°C, filling ratios of 45%, 70%, and 100%, and ratios of heat capacity rate of the evaporator to condenser sections (Ce/Cc) of 1 and 1.5. For HPHE's steady-state operation, a mathematical model for heat-transfer performance was set and solved using MATLAB. Results illustrated that the heat transfer rate was in direct proportion with the evaporator inlet-air temperature and flow rate. The highest HPHE's effectiveness was obtained at a 100% filling ratio and (Ce/Cc) of 1.5. The predicted and experimental values of condenser outlet-air temperature were in good agreement, with a maximum difference of 3%. HPHE's effectiveness was found to increase with the increase in evaporator inlet-air temperature and number of transfer units (NTU) and with the decrease in airflow rate, up to 33% and 20% for refrigerants R22 and R407c, respectively. Refrigerant R22 was the superior of the two refrigerants investigated.  相似文献   

18.
To improve the practicability of the waste heat recovery system for internal combustion engines, the compact potential of exhaust heat exchangers using metal foams is investigated. In the present study, the performance of compact exhaust heat exchangers is compared with that of a conventional shell and tube heat exchanger in a real test bench. Both heat transfer and pressure drop performance are considered when assessing the performance of heat exchangers because these two factors normally show a trade‐off relationship when designing exhaust heat exchangers. Compared with the conventional heat exchanger, the compact heat exchanger can achieve a similar pressure drop, and at the same time the heat transfer is increased by 30%, whereas the volume and the weight are each reduced by 2/3. The performance of compact heat exchangers with six types of Ni metal foams is also investigated under different mass flow rates and thicknesses of the porous layer. Results show that the optimum compact heat exchanger enhances the comprehensive performance 1.9 times compared with original one. This study shows that metal foams have great potential in realizing a compact exhaust heat exchanger for engine waste heat recovery.  相似文献   

19.
This paper is an experimental and theoretical study that aimed at conserving energy by utilizing the waste heat generated from a refrigeration system by calculating the range of condensation after the compression stage for the refrigerant (R410A). A helical coil tube‐shell heat exchanger was designed as a heat recovery unit to use the waste heat from an air conditioner 1TR (split type) in the outdoor unit between the compressor and the condenser to produce hot water and increase the coefficient of performance (COP) of the refrigeration cycle. Two experimental types of the helical coil heat exchanger (conventional and finned) were used in attempts to induce absorption of the rejected heat into tap water. The increase in the COP ranges from 12.5% to 40%, an increase in the water outlet temperatures difference reaches 12°C. A cost–benefit analysis in terms of the net present value and the payback period (PP) has been performed. From the analysis, it has been observed that the use of the designed heat recovery unit will save electrical consumption to produce the required hot water with a PP of about 11.7 months for the conventional heat exchanger and 17.5 months for the finned helical coil heat exchanger.  相似文献   

20.
The experimental study, thermal performance, and pressure drop of single-walled carbon nanotube (SWCNT) and graphene quantum dot (GQD) nanofluids in shell and tube heat exchanger with fin blade tubes are evaluated. The effects of the working fluid (water) volume flow rates (V̇= 2.5–10 L/min), volume concentration of nanoparticles (ω= 0.0%, 1%, 3%, and 5%), Reynolds number of working fluid (Re = 850–3300), and tube building (heat exchanger with fin blade tubes and without fin blade tube) have been analyzed. Results represent that with augmentation of volume concentration of SWCNT nanoparticle up to 1%, heat transfer rate increases by ∼5% and then up to 5% volume concentration of SWCNT nanoparticle decreased about 17%, also this calculation for GQD nanoparticle conducted and results represented decreasing 6% and approximately unchanged heat transfer rate, respectively. With regard to obtained results, heat transfer rate of heat exchanger can be improved by using the fin blades by 188%, compered without fin blade heat exchanger also most related increase for pressure drop of heat exchanger was recorded about 80% for 5% SWCNT of nanofluid. At the end, the mean enhancement in effectiveness of heat exchanger with various concentrations of SWCNT and GQD nanofluids and using the fin blades is about over 100% and 85%, respectively. In fact, the present study shows that applying the new finned tubes in the heat exchanger has more impact, related to the mentioned nanoparticles on the thermal properties of heat exchanger.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号