首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A metasurface‐based low‐profile crossed dipole antenna with wide circularly polarized bandwidth for 2.45 GHz ISM band wireless communications is proposed and fabricated in this article. Consisting of four slit‐loaded rectangular patches, the double‐sided printing crossed dipoles are fed by a pair of vacant‐quarter printed rings which circularly polarized (CP) radiation could be generated. With slits loaded, by properly combining the fundamental mode of the two inverted L‐shaped dipole, the slot mode and extra resonance generated by the AMC surface, a wideband circularly polarized operation can be obtained. After optimization, the final design with an overall size of 0.44λ0 × 0.44λ0 × 0.1448λ0 at 2.4 GHz had measured a 31.6% (2–2.75 GHz) impedance bandwidth and 3 dB axial ratio bandwidths of measured were 23.2% (2.1–2.65 GHz), respectively. In addition, the antenna performed a small gain variation (7.0–7.5 dBic) and a front‐to‐back ratio (FBR) of over 25 dB across the whole CP region.  相似文献   

2.
This article presents a simple design of circularly polarized (CP) antenna with low profile and wideband operation characteristics. To achieve these desirable features, a truncated corner squared patch is chosen as primary radiating source and surrounded by periodic metallic plates for bandwidth enhancement. Notably, all the radiating elements are designed on a single layer of substrate using printed circuit techniques, which significantly reduces the design complexity. The final prototype with overall size of 0.60λo × 0.60λo × 0.05λo (λo is free‐space wavelength at the center operating frequency) was fabricated and tested. Measured results show that the proposed antenna has wide operation bandwidth of 19.7% (5.1‐6.2 GHz). Additionally, broadside gain ranging from 5.0 to 6.9 dBic is also attained within the operating band. In comparison with the other reported antennas in literature, the proposed one has the simplest design architecture with competitive operating bandwidth.  相似文献   

3.
A compact wideband circularly polarized (CP) horn antenna with slot‐coupled feeding structure at Ku band for satellite communication is devised. The proposed design is based on a square aperture horn antenna with two orthogonal ridges, which is fed by nonuniform curved slot along the diagonal of the horn on the bottom cavity. And in order to improve the impedance matching, a staircase typed ridge is connected the feeding probe as a matching network. Moreover, two orthogonal ridges are excited with a tapered slot coupled by the staircase ridges via feeding probe. Wideband CP performance is achieved with an overall physical dimension of 9 mm × 9 mm × 14 mm (0.045λ0 × 0.045λ0 × 0.07λ0 at frequency of 15 GHz). It is experimentally demonstrated that the proposed antenna achieves: a wide 10‐dB return loss bandwidth of about 2.4 GHz, a 3‐dB axial ratio bandwidth of 1 GHz, and a peak gain of 6.5 dBi.  相似文献   

4.
A novel wideband crossed magneto‐electric (ME) dipole for circularly polarized (CP) radiation is proposed in this paper. The proposed antenna consists of a crossed dipole, four parasitic elements, and two pairs of folding metal plates (magnetic dipole). The parasitic elements and magnetic dipole are employed to enhance the axial ratio bandwidth (ARBW). The antenna size is 0.51λ0 × 0.51λ0 × 0.33λ0, where λ0 is the corresponding free‐space wavelength at the center frequency. A prototype antenna is fabricated and tested. The experiment results depict that the impedance bandwidth (IBW) for voltage standing wave ratio < 2 is 79.2% (2.5‐5.78 GHz) and the 3‐dB axial ratio bandwidth (ARBW) is 72.5% (2.7‐5.77 GHz). At the same time, good CP characteristics and stable symmetrical radiation patterns can be obtained across the operation bandwidth.  相似文献   

5.
In this communication, a broadband circularly polarized (CP) monopole antenna with coplanar waveguide (CPW) feeding is proposed. It consists of a modified rectangular monopole, an asymmetric ground plane, a two‐linked inverted L‐shaped strips on the left CPW ground, and two rectangular horizontal slots in asymmetric CPW ground plane. The overall dimension is only 0.47λ o × 0.47λ o. The antenna prototype has been fabricated. The measured results indicate that a broad ?10 dB impedance bandwidth (IBW) of 107.5% (4.3 GHz, 1.85‐6.15 GHz) and a broad 3 dB axial ratio ARBW of 104.3% (4 GHz, 1.855‐5.9 GHz) can be achieved; the average realized gain is 2.3 dBi for the entire CP band. The proposed antenna is an attractive candidate for several wireless communication systems.  相似文献   

6.
This article presents the design of an offset CPW‐fed slot antenna which exhibits a narrow impedance bandwidth (IBW; |S11| ≤ ?10 dB) extending from 1.20 GHz to 1.45 GHz and another wide impedance bandwidth from 1.86 GHz to 8.4 GHz thus covering almost all the conventional operating frequencies. The antenna is loaded with semicircular and rectangular stubs and meandered microstrip lines to realize circular polarization at 1.35 GHz, 3.3 GHz, 4.9 GHz, and 7.5 GHz with axial ratio bandwidth (axial ratio ≤ 3 dB) of 19.25% (1.2‐1.46 GHz), 4.24% (3.24‐3.38 GHz), 4.1%(4.8‐5 GHz), and 5.2% (7.3‐7.69 GHz) respectively thus covering the GPS, WiMAX, WLAN, and X‐band downlink satellite communication application bands. The mechanism of generation of CP is discussed using vector analysis of surface current density distribution. The gain is fairly constant in the wide IBW region with maximum fluctuation of 1.2 dB. The structure is compact with an overall layout area of 0.27λ × 0.27λ, where λ is the free‐space wavelength corresponding to the lowest circular polarized (CP) frequency. A comparison of the proposed antenna with previously reported structures is performed with respect to impedance bandwidth, compactness, number of CP bands, LHCP to RHCP isolation and gain to comprehend the novelty of the proposed design. A prototype of the proposed antenna is fabricated and the measured results are in accord with the simulated results.  相似文献   

7.
In this article, a novel inverted L‐shaped microstrip‐fed wideband circularly polarized (CP) modified square‐slot antenna is designed. By cutting a pair of triangle chamfers and introducing a pair of triangle patches at the square‐slot, the antenna achieves a wideband CP radiation. Moreover, CP performance of the antenna can also be remarkably enhanced by protruding an L‐shaped strip and embedding a tuning rectangle slot into the slot ground. The measured results demonstrate that the axial‐ratio bandwidth for AR < 3 is 75.1% (from 4.45 to 9.8 GHz) and the impedance bandwidth (|S11| < ?10 dB) reaches 65.8% (from 4.95 to 9.8 GHz). In addition, surface current studies are performed to illustrate the operating mechanism of CP operation, and the antenna has bidirectional radiation characteristics with an average gain of ~4 dBic within the CP band.  相似文献   

8.
A broadband high‐gain circularly polarized (CP) microstrip antenna operating in X band is proposed. The circular polarization property is achieved by rotating four narrow band linearly polarized (LP) microstrip patch elements in sequence. Since the conventional series‐parallel feed network is not conducive to the miniaturization of the array, a corresponding simplified feed network is designed to realize the four‐way equal power division and sequential 90° phase shift. With this feed network, the impedance bandwidth (IBW) of the CP array is greatly improved compared with that of the LP element, while maintaining a miniaturized size. Then, parasitic patches are introduced to enhance the axial ratio bandwidth (ARBW). A prototype of this antenna is fabricated and tested. The size of proposed antenna is 0.93λ0 × 0.93λ0 × 0.017λ0 (λ0 denotes the space wavelength corresponding to the center frequency 10.4 GHz). The measured 10‐dB IBW and 3‐dB ARBW are 13.6% (9.8‐11.23 GHz), 11.2% (9.9‐11.07 GHz) respectively, and peak gain in the overlapping band is 9.8 dBi.  相似文献   

9.
A dipole‐type millimeter‐wave (mm‐wave) antenna with directional radiation characteristics is presented. A radiating patch structure composed of a dipole‐type radiation patch and a rectangular‐shaped parasitic patch are initially investigated to achieve a wider bandwidth. To further improve the operating bandwidth and to realize a directional radiation characteristic, this radiating patch structure is top‐loaded above a conducting cavity‐backed ground structure, which has a low profile (thickness of 3 mm). The measured results show that the proposed mm‐wave antenna can achieve a wide 10‐dB bandwidth of 51.3% (29.6‐50.0 GHz) and stable gain across the desired frequency range. Furthermore, good directional characteristics over the entire mm‐wave frequency band with a compact antenna size of 0.64λ40GHz × 0.91λ40GHz × 0.43λ40GHz are also realized. Hence, it is suitable for many small size wireless mm‐wave systems.  相似文献   

10.
This work explains the design and analysis of a triple‐band electrically small (ka = 0.56 < 1) zeroth‐order resonating (ZOR) antenna with wideband circular polarization (CP) characteristics. The antenna compactness is obtained due to ZOR frequency of composite right/left‐handed (CRLH) transmission line (TL) and wideband CP radiation are achieved due to the introduction of single‐split ring resonator and asymmetric coplanar waveguide fed ground plane. The proposed antenna obtains an overall electrical size including the ground plane of 0.124 λ0 × 0.131 λ0 × 0.005 λ0 at 1.58 GHz and physical dimension of 23.7 × 25 × 1 mm3 are achieved. The antenna provides a size reduction of 44.95% compared to a conventional monopole antenna. The novelty behind the ohm‐shaped capacitor is the generation of extra miniaturization with better antenna compactness. The antenna provides dual‐polarized radiation pattern with linear polarization radiation at 1.58 and 3.54 GHz, wideband CP radiation at 5.8 GHz. The antenna measured results shows good impedance bandwidth of 5%, 6.21%, and 57.5% for the three bands centered at 1.58, 3.54, and 5.8 GHz with a wider axial ratio bandwidth (ARBW) of 25.47% is obtained in the third band. The antenna provides a higher level of compactness, wider ARBW, good radiation efficiency, and wider S11 bandwidth. Hence, the proposed antenna is suitable for use in GPS L1 band (1.565‐1.585 GHz), WiMAX 3.5 GHz (3.4‐3.8 GHz) GHz, WLAN 5.2/5.8 GHz (5.15‐5.825 GHz), and C‐band (4‐8 GHz) wireless application systems.  相似文献   

11.
A simple design of circularly polarized slot‐patch antenna array with broadband operation and compact size is presented in this article. The antenna element consists of a circular slot and a semicircular patch, which are etched on both sides of a substrate. For the gain and axial ratio (AR) bandwidth enhancement, its array antennas are implemented in a 2 × 2 arrangement and fed by a sequential‐phase feeding network. The final 2 × 2 antenna array prototype with compact lateral dimension of 0.8λL × 0.8λL (λL is the lowest frequency within AR bandwidth) yielded a measured impedance bandwidth of 103.83% (2.76‐8.72 GHz) and a measured AR bandwidth of 94.62% (2.45‐6.85 GHz). The peak gain values within the AR bandwidth are from 2.85 to 8.71 dBi. A good agreement between the simulated and measured results is achieved. This antenna array is suitable for multiservice wireless systems covering WiMAX, WLAN and C‐band applications such as satellite communications.  相似文献   

12.
In this article, a wideband circularly polarized (CP) dielectric resonator (DR) over an asymmetric‐slot radiator based hybrid‐DR antenna is proposed with bi‐directional radiation characteristics. Bi‐directional CP radiation of the dual sense is obtained using a rectangular‐DR over asymmetric‐rectangular‐slot radiator with L‐shaped feed line. The asymmetric‐slot radiator feed by L‐shaped stub with the coplanar waveguide is used for generating two orthogonal modes, namely TE x δ11 and TEy1δ1 in the combined (rectangular‐DR and asymmetric‐slot radiator) hybrid‐DR antenna, which is verified by the distribution of electric field inside the rectangular DRA. The measured reflection coefficient bandwidth (S11 < ?10 dB) and axial ratio (AR) bandwidth (AR < 3 dB) of the hybrid‐DR antenna are 80.5% (1.87‐4.39 GHz) and 43.8% (1.75‐2.73 GHz), respectively. The antenna radiation is in the broadside (θ = 0°, ? = 0°) direction as well as in the backside (θ = 180°, φ = 0°) direction with equal magnitudes in both the directions. Right‐handed and left‐handed CP waves are achieved respectively, in the boresight (+Z) and the backside (?Z) directions. The proposed CP hybrid‐DR antenna gives an average gain of 3.55 dBic and radiation efficiency of 95.0% in both directions. The proposed antenna covers various wireless useful bands such as ISM 2400 band, Wi‐Fi, Bluetooth, and Wi‐MAX (2.5‐2.7 GHz).  相似文献   

13.
In this article a novel wide‐band artificial magnetic conductor (AMC) based wideband directional antenna is presented for ultra‐wideband (UWB) applications. The proposed novel cross‐slot AMC (CSAMC) achieves wide ±90° reflection phase bandwidth of 4.07 GHz (44.69%) and is used as a reflector. The overall antenna structure is designed with 4 × 4 CSAMC unit cell array and has very compact size of (0.584λ0 × 0.584λ0). The proposed structure improves the radiation properties and exhibits 91.5% (3.13‐8.41 GHz) impedance bandwidth (VSWR ≤2). Additionally, it results in significant improvement in gain and front to back ratio. The proposed antenna is fabricated and its measured performance is in good agreement with simulation results.  相似文献   

14.
In this work, we propose a circularly polarized (CP) beam‐switching wireless power transfer system for ambient energy harvesting applications operating at 2.4 GHz. Beam‐switching is achieved using a low profile, electrically small CP antenna array with four elements and a novel miniaturized 4× 4 butler matrix. The CP antenna is designed with an e‐shaped slot and four antennas. The CP antenna measures 0.32 λ0× 0.32 λ0× 0.006 λ0 at 2.4 GHz. The antenna has a gain of 3 dBic and an axial ratio less than 3‐dB at 2.4 GHz. A linear antenna array consisting of four elements is designed with the CP antenna element with an inter‐element distance of 0.29 λ0 . A 4× 4 butler matrix with miniaturized couplers and crossovers are used to feed the four antenna array elements. Based on the input port of excitation, the main beam of the antenna array is demonstrated to be switched to four directions: ?5°, 65°, ?55°, and 20°. A CP rectenna is used to demonstrate the wireless power transfer capability of the combination of the butler matrix and the CP‐antenna array. The rectenna consists of a Teo‐shaped CP antenna and a rectifier. The open circuit voltage at the output of the rectenna is found to peak value of 30 mV at ?3°, 61°, ?53°, and 17°. Thus a complete system for CP wireless power transfer including the power transmission system as well as the RF energy harvesting sensor is designed and experimentally verified.  相似文献   

15.
In this article, a circularly polarized coupled slot 1 × 4 stacked patch antenna array with enhanced bandwidth is proposed for S‐band applications. Initially, a patch antenna radiating at 2.79 GHz is designed and maximum energy from feedline to patch element is coupled using two rectangular slots. Whereas, a parallel feedline structure is designed to provide polarization flexibility by creating 0, 90 , and 180o phase differences. Then, a truncated patch element is vertically stacked in the design to achieve broader bandwidth of 600 MHz over frequency range from 2.4 to 3.0 GHz. Finally, a coupled slot 1 × 4 array stacked antenna array having feedline line structure to provide 90o phase difference for circular polarization is designed and fabricated for measurements. It is observed that the final design achieved target specification having impedance matching (|S11 | (dB) < ?10 dB over 2.4 to 3.0 GHz, broad band circular polarization, and 11.5 dBic total gain. Overall, a good agreement between simulated and measurement results is observed.  相似文献   

16.
A broadband and compact coplanar waveguide (CPW) coupled‐fed metasurface (MS)‐based antenna for C‐band synthetic aperture radar (SAR) imaging application is proposed in this article, which is consisted of 16 uniform periodic square patches performed as radiators. The CPW feeding structure gives two following functions: (1) It excites an aperture coupling slot structure underneath the center of MS patch array. (2) It acts as a ground plane for the metasurface patch units. Different slots were investigated and eventually an hourglass‐shaped slot is applied to enhance bandwidth for imaging applications. A prototype with a dimension of 60 × 60 × 1.524 mm3 (1.1λ0 × 1.1λ0 × 0.03λ0) operating at the center frequency 5.5 GHz (f0) has been fabricated and measured to verify the design principle. This antenna has a measured impedance bandwidth of 12.4% from 5.14 to 5.82 GHz, a peak gain of 9.2 dBi and averaged gain of 7.2 dBi at broadside radiation. Microwave imaging experiments using the proposed antenna have been carried out and a good performance is achieved.  相似文献   

17.
In this article, a broadband quasi‐Yagi array of rectangular loops using low‐temperature co‐fired ceramic technology is proposed. The antenna is fed by a simple and compact microstrip‐to‐coplanar strip transition, which serves as balun and impedance transformer simultaneously. Four rectangular loops are used to direct the antenna propagation toward the end‐fire direction. Compared with the planar directors in traditional quasi‐Yagi antenna, they can provide better director effect to improve the radiation performance. Furthermore, they act as good impedance matching elements to broaden the bandwidth. The measured results show that the proposed antenna achieves a wide bandwidth of 42% for S11 < ?10 dB (from 26.1 to 40 GHz), better than 12 dB front‐to‐back ratio, smaller than 14 dB cross polarization and an average gain over 6.5 dBi across the operating bandwidth. The antenna occupies a compact size of 8 × 8 × 1 mm3. © 2013 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:196–203, 2014.  相似文献   

18.
A planar broadband circularly polarized (CP) X‐band array antenna with low sidelobe and high aperture efficiency is presented for small satellite applications. The array design is composed of 4 × 4 broadband CP stacked patch elements, which are fed by a feeding network consisted of unequal series‐parallel power dividers to achieve the low sidelobe and high aperture efficiency. The final prototype with overall size of 100 mm × 100 mm × 3 mm (2.73λ0 × 2.73λ0 × 0.082λ0 at 8.2 GHz) was fabricated and measured. The antenna has a broadband characteristic with |S11| < ?10 dB bandwidth of 15.9% (7.52‐8.82 GHz) and 3‐dB axial ratio bandwidth of 11.95% (7.63‐8.60 GHz). Also, it achieves an excellent broadside CP radiation with a gain of 17.2‐20.03 dBic, a sidelobe level of <?20 dB, and aperture efficiency of 65% to 97.5%. With these features, the proposed antenna is a good candidate for high‐speed data downlink onboard small satellites (MiniSat, MicroSat, NanoSat, and CubeSat).  相似文献   

19.
A wide‐angle scanning circularly polarized (CP) leaky‐wave antenna (LWA) with suppressed side‐lobe levels (SLLs) is proposed, which can be a good candidate for future radar and wireless communication systems. The LWA consists of 12 cross slotted elliptical patch elements, which are fed by a microstrip spoof surface plasmon polariton (SSPP) line. Two fundamental modes of the patch array with two orthogonal polarizations can be excited by the electromagnetic coupling between the array and the SSPP line. By optimizing the elliptical eccentricity e and etching cross slots on the elliptical patch array, a 90° phase difference is introduced, and then, the CP radiation is realized. A tapered aperture field distribution is also realized by adjusting coupling intensities between the patch elements and the SSPP line, which is beneficial to reduce the SLLs. The electrical size of the LWA is 1.29λ0 × 6.02λ0 × 0.08λ0, where λ0 is air wavelength at 12.9 GHz (broadside direction). Both the simulated and measured results indicate that the CP operating band is 12.0 to 15.0 GHz. The proposed CP LWA scans continuously from ?14° to 38°. In the whole operating band, the axial ratios are less than 3 dB, and the SLLs are less than ?20 dB as well.  相似文献   

20.
A multilayered circularly polarized (CP), dual‐band, stacked slit‐/slotted‐patch antenna with compact size and with compact rectifier is offered for RF energy harvesting systems. The compact dual‐band CP antenna size is able to achieve by stacking slotted‐circular‐patch (SCP) on the substrate above the tapered‐slit‐octagon patch (TSOP). Dual‐band CP radiation is realized by stacking the SCP on the TSOP and the microstrip feedline with metallic‐via to SCP. Eight‐tapered‐slit with length difference of 6.25% are embedded along the octagonal directions symmetrically on the TSOP from the patch's center and two unequal size circular slots are embedded in diagonal axis onto SCP to produce dual‐orthogonal modes with almost equal magnitude for CP waves. The designed antenna is realized measured gain of greater than 5.2 dBic across the band (0.908‐0.922 GHz) with maximum gain of 5.41 dBic at 0.918 GHz and gain of greater than 6.14 dBic across the band (2.35‐2.50 GHz) with maximum gain of 7.94 dBic at 2.485 GHz. An overall antenna volume is 0.36λ o × 0.36λ o × 0.026λ o (λ o is free space wavelength at 0.9 GHz). A compact composite right‐/left‐handed (CRLH) based rectifier with dual‐band at 0.9 and 2.45 GHz is designed, prototyped, and measured. The right‐handed (RH) part of the CRLH transmission line (TL) is formed by a microstrip line. The left‐handed (LH) part of the CRLH‐TL is formed by lumped components. The measured RF‐DC conversion efficiency is 43% at 0.9 GHz and 39% at 2.45 GHz with rectifier size of 0.18λ o × 0.075λ o × 0.0002λ o at 0.9 GHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号