首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— In this article, second‐generation liquid‐crystal displays (LCDs) made by Paintable LCD technology is presented. With this technology, LCDs are manufactured by a sequence of simple coating and UV curing processes. Since the process can be carried out on plastic substrates and the stack of optical layers is only tens of micrometers thick, the resulting LCDs are ultra‐thin and flexible.  相似文献   

2.
Abstract— We have developed a new technique for the production of thin crystal film (TCF) by deposition, molecular alignment, and the drying of water‐based lyotropic‐liquid‐crystal (LLC) materials. TCF exhibits high optical anisotropy and birefringence. This paper presents liquid‐crystal‐display (LCD) applications and opportunities for TCF plastic sheet polarizers, retarders, and color‐correction films as well as LCD designs with TCF internal polarizers.  相似文献   

3.
We have developed a novel super fast response (SFR) thin‐film transistor liquid crystal display (TFT‐LCD) with an extremely wide temperature range. Nematic liquid crystal molecules with positive dielectric anisotropy are vertically aligned initially. Any gray‐to‐gray response is forcibly controlled by applying an electric field. Response times of the SFR TFT‐LCD are over several times shorter than those of conventional LCDs such as vertical alignment or in‐plane switching LCDs.  相似文献   

4.
Abstract— A new type of fast‐optical‐response liquid‐crystal display is introduced. This display uses a certain type of smectic liquid‐crystal material that has a fast optical response as well as a native wide viewing angle. Unlike well‐known smectic‐based LCD technologies, this new type of LCD technology is highly compatibile with most nematic‐based LCDs. This compatibility provides advantages for practical uses. Here, the initial molecular alignment and drive concept as well as the general performance of this new display technology are discussed.  相似文献   

5.
Curved liquid crystal display (LCD) suffers from an issue of uneven brightness among the vertical‐alignment LCD panels based on thin glass substrates. In this work, we investigated its origin through optical simulation and successfully realized uniform brilliance for 27‐inch curved LCD panels. The optical simulation revealed that the dark areas on the bending sides of the curved LCD panel originated from the reduced azimuth angle of the liquid crystals (LC) next to the ITO trunk. This issue could be resolved by decreasing the pretilt angle of the LC on the color filter side. Through developing pretilt angle tuning technologies, we experimentally verified that the uniform brilliance could be achieved for 27‐inch curved LCD panels with 900‐mm curvature on thin glass substrates.  相似文献   

6.
Vertical alignment (VA) and in‐plane switching modes have been widely used for liquid crystal displays (LCDs). They require a polyimide (PI) alignment layer in the pixel structure. PI‐free LCDs have been proposed to exploit the VA of liquid crystals (LCs) obtained by dissolving dendrimers without PI. In this paper, we report a new PI‐free VA mode with a pixel structure that has in‐plane electrodes. The PI‐free VA is achieved by dissolving an LC dendrimer in a positive LC mixture. We measured the test cell properties and obtained a lower voltage and a higher brightness in the voltage–brightness curve. In addition, we analyzed the alignment surface of LC dendrimer by time‐of‐flight secondary ion mass spectrometry and scanning electron microscopy observations. We found that dendrimer molecules are uniformly adsorbed on the glass surface and that the layer was generally one molecule thick. These properties are responsible for the lower voltage and higher brightness of the PI‐free VA mode. The use of dendrimers allows the PI process to be omitted and reduces the power consumption of the VA mode. It is thus possible to reduce the high manufacturing costs and improve the performance of the VA mode.  相似文献   

7.
Abstract— Two configurations, (i) a double‐cell‐gap twisted nematic (DTN) liquid‐crystal display (LCD) and (ii) a single‐cell‐gap twisted‐nematic (TN) liquid‐crystal display (LCD) using a twisted LC retarder, were optimized for transflective liquid‐crystal displays. For the DTN configuration, both the single‐cell‐gap approach and the double‐cell‐gap approach were considered. The optimized configurations exhibit a high contrast ratio, wide viewing angles, and achromatic (black/white) switching in both the transmissive and reflective modes. They are easy to fabricate and also possess a perfect dark state. Both are suitable for high‐quality transflective TFT‐LCDs.  相似文献   

8.
An increasing number of studies on efficient implementation of vivid and realistic displays are being conducted as liquid crystal displays (LCDs) become widely used in TV applications. For vivid displays, the specifications such as wide color gamut (WCG) and high dynamic range (HDR) should be implemented in LCDs. However, the low transmittance rate of the WCG and the significant costs for the peak luminance capability of the HDR are major obstacles. Hence, an RGBW LCD, which is capable of increasing the transmission efficiency, may be a good platform to overcome these problems.In this paper, we estimate the perceived brightness effect of the WCG by using the Helmholtz–Kohlrausch (H–K) effect on RGB and RGBW LCDs. The simulation results showed that the RGBW LCD was more suitable for adopting the WCG than the RGB LCD in terms of the brightness balance of achromatic and chromatic colors, and the results were also confirmed by subjective tests. In addition, we propose an effective method to implement the HDR display based on the RGBW LCD. The data stretch, considering a local adaptation characteristic of a human visual system (HVS), greatly enhanced the details of the dark regions, and the local peak dimming using the white channel analysis and the white channel data itself increased the expressiveness of the peak luminance in irradiative or specular regions to 1500 nits.  相似文献   

9.
Nowadays, thin‐film transistor liquid crystal displays (TFT‐LCDs) have realized high reliability of display characteristics by improving liquid crystal (LC) materials and cell fabrication processes. In order to improve display reliability, measurement methodologies are important to see the progress of improvement of materials and processes; thus, our group has proposed voltage holding ratio (VHR), ion impurity, residual direct current (DC) and elastic constants for LC cells, and the optical anisotropy of an alignment layer on indium tin oxide (ITO) glass substrate for LCD industry. In case of an ion impurity, we have succeeded in measuring the ion impurity amount in TFT‐LCD. Furthermore, we have recently proposed ion impurity measurement methodology for beyond LCD applications that are organic light emitting diode (OLED) and organic photovoltaics (OPV). In this review, I introduce each measurement methodology for LCDs and beyond LCDs in detail.  相似文献   

10.
Abstract— A thin‐crystalline‐film (TCF) polarizer has been developed which can be used internally in liquid‐crystal‐display cells. Based on this material, a manufacturing process has been developed for the fabrication of monochrome LCDs with internal polarizers. A new TCF polarizer material and coating equipment, developed to realize a high‐performance color TFT‐LCD, are discussed.  相似文献   

11.
Abstract— In this paper, many popular methods to study transflective liquid‐crystal‐displays (LCDs) have been discussed, and several new transflective LCD configurations with a single‐cell gap have been proposed. The traditional double‐cell‐gap method gives the best match of the transmittance/reflectance voltage curve (TVC/RVC) and also the widest viewing angle, but also brings the highest fabrication complexity. The single‐cell‐gap transflective LCD is much easier to fabricate and also shows a good match of TVC/RVC. A new methodology has been shown to find optimal configurations for single‐cell‐gap transflective LCDs. New configurations using multimode in a single pixel include twisted nematic (TN) optically compensated bend (OCB), TN electrically controlled birefringence (ECB), and TN low‐twisted nematic (LTN). TN and hybrid‐aligned nematic (HAN) modes have been investigated for single‐mode transflective LCDs. The results exhibit high contrast ratio, a good match of TVC/RVC, as well as wide viewing angle.  相似文献   

12.
Abstract— Super IPS (S‐IPS) technology has intrinsic advantages in several aspects required for TV applications. Particularly, the wide‐viewing‐angle property and fast gray‐to‐gray response time of S‐IPS LCDs are both necessary requirements for family and individual use for LCD TVs. Given these benefits and other advantages S‐IPS provides, LG.Philips LCD has developed high‐performance S‐IPS LCDs for TV, which have now become competitive with plasma‐display panels (PDPs), in addition to other modes of LCD TVs as well as CRTs. This article will discuss why S‐IPS technology is the leading choice for LCD‐TV applications.  相似文献   

13.
Abstract— Cholesteric liquid crystals automatically form one‐dimensional photonic crystals. For a photonic crystal in which light‐emitting moieties are embedded, unique properties such as microcavity effects and simultaneous light emission and light reflection can be expected. Three primary‐color photonic‐crystal films were prepared based on cholesteric liquid crystal in which fluorescent dye is incorporated. Microcavity effects, i.e., emission enhancement and spectrum narrowing, were observed. Two types of demonstration liquid‐crystal displays (LCDs) were fabricated using the prepared photonic‐crystal films in a backlight system. One is an area‐color LCD in which a single photonic‐crystal layer is used for each color pixel and the other is a full‐color TFT‐LCD in which three stacked photonic‐crystal layers are used as light‐conversion layers. The area‐color LCD was excited by using 365‐nm UV light, and the full‐color TFT‐LCD was excited by using 470‐nm blue LED light. Because of the photonic crystal's unique features that allow it to work as light‐emitting and light‐reflecting layers simultaneously, both LCDs demonstrate clear readable images even under strong ambient light, such as direct‐sunlight conditions, under which conventional displays including LCDs and OLED displays cannot demonstrate clear images. In particular, an area‐color LCD, which eliminated color filters, gives clear images under bright ambient light conditions even without backlight illumination. This fact suggests that a backlight system using novel photonic‐crystal layers will be suitable for energy‐efficient LCDs (e2‐LCDs), especially for displays designed for outdoor usage.  相似文献   

14.
Abstract— Liquid‐crystal (LC) photoalignment using azo dyes is described. It will be shown that this photoaligning method can provide a highly uniform alignment with a controllable pretilt angle and strong anchoring energy of the LC cell, as well as a high thermal and UV stability. The application of LC photoalignment to the fabrication of various types of liquid‐crystal displays, such as VAN‐LCDs, FLCDs, TN‐LCDs, and microdisplays, on glass and plastic substrates is also discussed. Azo‐dye photoaligned super‐thin polarizers and phase retarders are considered as new optical elements in LCD production, in particular for transflective displays.  相似文献   

15.
Hyoseung Kim  Hojung Cha  Rhan Ha 《Software》2007,37(2):193-206
In recent years, there has been wide‐spread use of large and high‐resolution liquid‐crystal displays (LCDs) on handheld devices. The portion of LCD power consumption in the overall system has gradually increased. While most of the previous research on LCD power management has focused on the hardware level, practical mechanisms at the software level are hardly known. This paper presents a power‐aware LCD management mechanism, based on dynamic refresh‐rate scaling and frame buffer monitoring. The proposed mechanism guarantees the display quality of service, which is inherently specified by content types. The mechanism does not require additional hardware or modifications to applications. The experiment results—on a commercial PDA with a resolution—show that the proposed mechanisms effectively reduce the power consumption by up to 10%, while satisfying the display quality requirements for the LCD screen. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
Abstract— Liquid‐crystal displays (LCDs) are replacing cathode‐ray tube (CRT) displays as primary diagnostic viewing devices in clinics. They exhibit higher spatial noise than CRTs, which can interfere with diagnosis and reduce the efficiency especially when subtle abnormalities are presented. A study by the authors on LCD spatial noise has recently been reported. A high‐quality CCD camera was used to acquire images from the LCD. Noise properties were estimated from the digital‐camera images. Then, an error‐diffusion‐based operation was applied to reduce the display spatial noise. This paper presents the noise estimation and reduction results on five different medical‐grade LCDs using the same study protocol. These five different LCDs vary in terms of matrix size, pixel size, pixel structure, and vendors. The purpose of this work is to demonstrate that the LCD spatial‐noise estimation and reduction scheme proposed earlier by the authors is valid, robust, and necessary for various medicalgrade LCDs used in clinics today.  相似文献   

17.
Abstract— The alignment properties of the azo‐dye photo‐alignment material SD‐1/SDA‐2 on plastic substrates are investigated. Important liquid‐crystal cell parameters, such as azimuthal and polar anchoring energy, pretilt angle, voltage holding ratio, and the corresponding electro‐optical properties are presented. Excellent alignment with high anchoring energy can be achieved with a polarized UV dose less than 1.0 J/cm2. A reflective six‐digit flexible passive‐matrix‐driven TN‐LCD for smart‐card applications showing excellent electro‐optical properties is demonstrated.  相似文献   

18.
Abstract— An attractive concept for 3‐D displays is the one based on LCDs equipped with lenticular lenses. This enables autostereoscopic multiview 3‐D displays without a loss in brightness. A general issue in multiview 3‐D displays is their relatively low spatial resolution because the pixels are divided among the different views. To overcome this problem, we have developed switchable displays, using liquid‐crystal (LC) filled switchable lenticulars. In this way, it is possible to have a high‐brightness 3‐D display capable of fully exploiting the native 2‐D resolution of the underlying LCD. The feasibility of LC‐filled switchable lenticulars was shown in several applications. For applications in which it is advantageous to be able to display 3‐D and 2‐D content simultaneously, a 42‐in. locally switchable prototype having a matrix electrode structure was developed. These displays were realized using cylindrically shaped lenticular lenses in contact with LC. An alternative for these are lenticulars based on gradient‐index (GRIN) LC lenses. Preliminary results for such switchable GRIN lenses are presented as well.  相似文献   

19.
Abstract— The electro‐optical characteristics of a 90° twisted‐nematic liquid‐crystal display (TN‐LCD) were analyzed. The test cell was composed of a minute amount of dopant, multiwalled carbon nanotubes, and a standard nematic mixture, E7, used in TN‐LCDs with direct addressing. Under the experimental conditions, no hystereses in optical transmittance were observed in either the doped cell or a neat counterpart under an applied ac voltage. Experimental results show that doping with nanotubes rectifies the electro‐optical properties of the cells by reducing the driving voltage as well as the rise time. Similar results were found in a TN cell of a TFT‐grade liquid crystal instead of the mixture consisting completely of polar compounds.  相似文献   

20.
Abstract— Recent results from encapsulation work on the development of flexible and drapable cholesteric liquid‐crystal displays (LCDs) on substrates such as thin plastics, fabrics, and even paper will be presented. The approaches used to create flexible displays using single‐ and dual‐substrate methods based on printable emulsions and polymerization‐induced phase‐separation (PIPS) techniques will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号