首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
离子交换膜燃料电池是氢能应用开发的重要研究领域。研究了离子交换膜燃料电池用的铂碳复合电极制备工艺和碳材料的选择对燃料电化学性能的影响。研究结果表明,铂碳复合电极的制备工艺对燃料电池放电性能有重要影响,采用刷涂法和物化法制备的铂碳复合电极所组装的燃料电池具有较好的电化学性能。研究结果还发现,复合电极中碳材料的微观结构也是影响燃料电池化学性能的重要因素,碳材料的比表面积越大,燃料电池的放电性能就越好。  相似文献   

2.
研究了电极扩散层对离子膜燃料电池放电性能的影响。结果表明:制备扩散层的基体材料对燃料电池放电性能有较大的影响。本实验所采用的碳纸、碳膜和碳纤维布3种基体材料中,碳纤维布是一种较为理想的基体材料,不同扩散层所组装的燃料电池最大放电功率密度有较大的差别,碳纤维布扩散层所组装的燃料电池最大放电能量分别是碳纸和碳膜扩散层所组装的燃料电池最大放电能量的2.16倍和6.94倍。不同扩散层对燃料电池最佳放电运行时的放电电压和放电电流密度也都有一定的影响,特别是对放电电流密度影响更为强烈,电极扩散层的疏水性是影响燃料电池稳定放电寿命的一个重要因素,因此在电极扩散层的制备和基材选择过程中,必须充分考虑这一因素的影响。  相似文献   

3.
质子交换膜燃料电池专用碳纸的制备及性能测试   总被引:3,自引:0,他引:3  
采用湿法造纸技术制备质子交换膜燃料电池电极扩散层专用碳纸材料,考察了影响专用碳纸性能的主要因素。研究结果表明:分散剂、粘合剂和纤维长度等对碳纸物性具有较大影响。以3M的NaOH处理碳纸的基体材料,控制打浆度20°SR,按比例加入自制功能性分散剂,在优化工艺条件下,制备的碳纸物性基本和日本东丽公司产品(Toray碳纸)物性相同。以自制的碳纸和Toray碳纸为电极扩散层基体材料组装成电池,放电性能测试表明,自制碳纸是一种较为理想的燃料电池电极扩散层基体材料。  相似文献   

4.
离子交换膜电池作为一种理想的氢能发电装置,是目前氢能研究开发的热点。研究了电极添加剂对离子交换膜燃料电池电化学性能的影响。  相似文献   

5.
离子交换膜燃料电池作为一种理想的氢能发电装置,是目前氢能研究开发的热点.研究了电极添加剂对离子交换膜燃料电池电化学性能的影响.实验结果表明,离子膜燃料电池的放电电压和电流密度均随电极催化层中PTFE的含量增加而呈起伏变化,在负极催化层PTFE含量为8%,正极催化层PTFE含量为12%-16%时,燃料电池的放电电压和电流密度都处于高峰值状态.实验结果还表明,在电极中加入适量的Nafion乳液可显著地提高电极的电催化反应活性,同时也发现添加不同方法配制的Nafion乳液,对燃料电池放电性能的影响也有一定的差别.  相似文献   

6.
水对质子交换膜(PEM)燃料电池的性能有极其重要的影响,良好的水管理是PEM燃料电池保持高性能的必要条件.通过试验,观察了在重力作用下液态水对PEM燃料电池性能及其内部传质的影响,分析了PEM燃料电池单体电极的不同摆放位置对其性能的影响.试验结果发现:在电流密度较小时,重力对PEM燃料电池性能的影响不明显,电流密度较大时,重力对PEM燃料电池性能的影响比较明显.试验结果对优化PEM燃料电池的结构和水管理有一定的参考价值.  相似文献   

7.
以光伏电池生产废料中的大尺寸硅颗粒(200~800 nm)为原料,水性聚氨酯(PU)和聚苯胺(PANI)作为碳源,通过液相包裹法和低温热解法制备了不同结构碳复合的硅碳负极材料(SPU与SPU#PANI),分别研究了复合碳含量、微结构与元素掺杂对负极电化学性能的影响。SPU负极中碳复合量低,首次放电比容量高达2193.6 mAh/g,但循环稳定性差。经二级碳复合后的SPU#PANI导电性提高,在多孔碳微结构支撑作用下,不仅获得了较高的放电比容量(1488.8 mAh/g),而且经100次循环后SPU#PANI放电比容量保持在756.8 mAh/g以上,表现出良好的倍率性能。研究结果表明,大尺寸硅颗粒表面复合了具备多孔结构的碳后,不仅为硅充放电过程中的膨胀提供了缓冲,也为锂离子传输提供通道,有效地提升了硅基负极的电化学性能和稳定性。本工作采用的多级碳低温热解复合方法,可为锂离子电池硅基负极产业化技术发展提供重要的借鉴。  相似文献   

8.
聚丙烯腈基石墨毡电极存在电化学活性低等问题,限制了全钒液流电池(VRFB)的发展.为提高VRFB正极侧电极性能表现,研究以硫脲为掺杂源,制备了氮硫共掺杂的羧基化多壁碳纳米管(MWCNTs-COOH-NS)作为VRFB的催化剂.将MWCNTs-COOH-NS修饰到聚丙烯腈基石墨毡电极上,得到复合电极材料.通过扫描电子显微镜(SEM)、比表面积测试(BET)、X射线光电子能谱(XPS)、四探针电导率测试、循环伏安法(CV)、电化学阻抗分析法(EIS)及充-放电循环测试研究了复合电极的表面形态和电化学性能.结果表明,改性后的复合电极提高了比表面积,降低了电池内阻.当电流密度为80 mA/cm2时,电池的能量效率为81.70%,放电容量可以达到782.60 mA·h.在160 mA/cm2的条件下进行充放电测试,电池的能量效率仍可达到72.73%.MWCNTs-COOH-NS修饰的石墨毡电极对正极侧钒离子的氧化还原反应表现出了良好的催化活性和电化学可逆性,并且在充放电测试当中展现出了良好的循环稳定性.本研究有望在一定程度上推动VRFB电极催化剂的发展.  相似文献   

9.
利用锡硅二元氧化物分别采用前修饰法和后修饰法修饰Pt/C催化剂,制备得到两种复合催化剂,并用于阳极催化层制备膜电极(MEA).首先,考察修饰方式对膜电极性能的影响.膜电极的电池性能测试表明,使用前修饰法制备的Pt/SnO2-SiO2/C复合催化剂表现出更优的电池性能:在电池温度为50℃、完全增湿条件下,0.6 V的电流密度高达1100 mA/cm2.同时该膜电极也显示出良好的自增湿性能和稳定性:在电池温度为50℃、完全不增湿(干气)条件下,0.6 V的电流密度为930 mA/cm2,且经过10 h稳定性测试后,性能仅降低13%,而空白膜电极在2 h内性能下降63%.进一步比较在不同相对湿度条件下的膜电极性能,结果表明该膜电极在相对湿度较低的条件下表现出优异的自增湿性能.根据实验数据,初步推测出一种使用Pt/SnO2-SiO2/C复合催化剂的膜电极的自增湿机理.  相似文献   

10.
交指状流场质子交换膜燃料电池的流动特性   总被引:1,自引:0,他引:1  
不同流场构型对质子交换膜燃料电池的流动特性和电池效率有重要的影响,因此流场的设计和理论研究是质子交换膜燃料电池研究的重要课题.发展了一个基于计算流体力学的稳态的三维数学模型,应用建立的模型对一个交指状流场设计的质子交换膜燃料单电池进行了数值研究,电池的电极面积大小为6.4×6.5 cm2,计算得到了电池的流场、局部电流密度和组分浓度等的空间分布,分析了其流动特性和传输机理.  相似文献   

11.
碳基材料因具有资源丰富及结构多样性等优点,作为铝离子电池(AIBs)正极材料得到广泛的应用.本文总结了碳基材料在铝离子电池应用领域所发挥的重要作用,综述了碳材料作为铝离子电极材料的作用机理和研究进展,着重阐述了调控材料结构来提高电池电化学性能.在碳正极材料方面,主要概述了正极材料(石墨、石墨烯和碳纳米管)的各种形貌结构对电化学性能的影响.最后,对于碳基材料在铝离子电池领域需要解决的问题进行了探讨,以期提高铝离子电池的应用性能.  相似文献   

12.
测试分析了3种不同离子交换膜材料的水存留量,溶涨率和离子导电率,结果表明水存留量的膜材料溶涨率和离子导电离也相应较大,对不同离子交换膜的耐热和耐压稳定性测试结果发现3种离子交换膜在200℃以下范围内都没有发生相变或其它结构性变化,失重率都低于5%,因此3种膜材料在200℃以下温度范围内使用是安全可靠的,不同膜材料的耐压机械强度均随着热压处理温度升高而逐渐下降,在相同热压温度条件下的耐压强度的,SH117B膜大于或等于Nafion117膜,Nafion117膜大于或等于SH117A膜,离子交换膜也是影响燃料电池放电性能的一个重要因素,Nafion117组装的燃料电池最大放电功率密度分别是SH117A膜和SH117B膜组装的燃料电池最大放电功率密度的1.28倍和2.4倍。  相似文献   

13.
建立了直接甲醇燃料电池垂直流道方向电池单元的二维稳态数学模型,考虑了电化学动力学、多组分传递和甲醇渗透影响.计算了流道布置密度、扩散层、催化层和质子交换膜等组件尺度对电池内物料传质特性、化学反应组织和电池输出性能的影响.研究发现,增加流道布置密度、增加催化层厚度能有效提高电极反应均匀性和电池性能.其中催化层和质子膜的厚度影响最为显著,在该文研究范围内分别可提高电池的平均电流密度131.0%和17.8%.而扩散层和质子交换膜厚度都存在一个最佳值,需要与以上流场板设计尺寸和膜电极尺寸匹配.  相似文献   

14.
本文介绍了钒液流电池电极材料的研究现状。详细介绍了电极种类、电极材料的改性途径、改性效果,并对电极的老化机制进行了分析。全钒液流电池(VFB)电极材料改性的方法主要包括增加电极催化活性和增大电极电化学反应面积两种方式。通过对电极进行热处理、酸处理,可以改变电极表面结构,提高电极催化活性,从而提高电极反应可逆性。通过在电极表面生长碳纳米管或者负载石墨烯、氧化铱等而制备的复合电极材料,以及采用天然废弃物制备的多孔碳电极,可以达到同时提高电极表面催化活性和增大电极电化学反应面积的效果。还可以通过制备电极和双极板复合一体化电极,降低电池的接触电阻,减小电池极化。而电极的化学降解及电化学降解对于电极的寿命会产生影响,而且对电池负极的影响比正极更加明显。最后,总结了VFB电极材料的现状并展望了未来研究发展的方向。  相似文献   

15.
静电纺丝法由于具有工艺简单、功能多样等优点,是一种重要的制备一维锂钠离子电池纳米结构电极材料的方法。目前,已有大量利用静电纺丝技术制备高性能电极材料的研究报道,但具有系统性和针对性的综述论文尚十分有限。碳材料是最早被研究且已实现商业化的锂离子电池负极材料,硅材料则是理论容量最高的负极材料,因此,两者一直是学术界和工业界关注的重点;但碳材料理论容量低和硅材料体积变化大的问题严重阻碍了各自更广泛的实际应用。静电纺丝技术被证明是一种可以解决上述问题的十分有效的方法。因此,本文系统地综述了静电纺丝法制备的硅基和碳基纳米纤维在锂钠离子电池负极材料上的应用和发展,重点从静电纺丝原理、硅碳材料的设计及合成、结构的调控与优化、复合材料的制备到电化学性能的提高等方面作了详细介绍和讨论,同时也指出静电纺丝法在大规模生产中的不足及未来可能的发展方向。希望此综述可以为先进储能材料(尤其是硅基和碳基纳米电极材料)的设计和制备提供一些有益的指导和帮助。  相似文献   

16.
阳极材料对微生物燃料电池性能影响的研究   总被引:1,自引:0,他引:1  
以石墨、碳纸、碳布和碳毡为阳极材料,研究不同材料在微生物燃料电池中的产电性能,并利用循环伏安法比较不同材料的电化学活性。结果表明:在电池性能方面,以石墨为阳极微生物燃料电池电压可达0.678V,输出功率为250mW/m2;碳毡电压达0.656V,输出功率204mW/m2,碳纸0.649V,输出功率156mW/m2;碳布最差,电压不稳定,输出功率56mW/m2。循环伏安曲线和电极材料表观吸附量:碳毡作为阳极材料,具有明显的氧化峰和还原峰,对导电微生物具有显著的吸附量,其次是石墨,碳纸次之,最差的是碳布。  相似文献   

17.
钠离子电池被认为是一种极具潜力的二次电池体系,得到了国内外的广泛关注。硬碳是主要的钠离子电池的负极材料,但是,由于硬碳材料固有比容量较低,极大地限制了其全电池能量密度的提升。相比之下,磷资源丰富,且作为活性材料具备理论比容量高的优点,可用于发展磷基高比容量和长寿命的钠离子电池负极材料。本文通过对近期相关文献的探讨,综述了提高结构稳定性和电化学性能的一些有效策略。黑磷能够较为容易地通过机械的方法制备,并与石墨烯、多壁碳纳米管、科琴黑等碳材料复合,但是微观化学键的构建需要额外考虑,碳材料表面与黑磷化学键结合能够显著增强结构和储钠可逆性。此外,也可以引入导电高分子材料和部分典型的二维材料与黑磷复合,实现材料和电极微观结构优化,提供了提升电化学性能的重要方法,最后展望了黑磷作为钠离子电池负极材料的发展前景。  相似文献   

18.
燃料电池发展现状与应用前景   总被引:9,自引:0,他引:9  
介绍了各种类型燃料电池(碱性燃料电池,熔融碳酸盐燃料电池,固体氧化物燃料电池,磷酸燃料电池及质子交换膜燃料电池)的技术进展,电池性能及其特点。其中着重介绍了当今国际上应用较广泛,技术较为成熟的磷酸燃料电池和质子交换膜燃料电池。对燃料电池的应用前景进行探讨,并对我国的燃料电池研究提出了一些建议。  相似文献   

19.
燃料电池阴极侧氧还原反应由于其迟缓的动力学,使得贵金属铂成为最为高效的电催化剂,成本高昂,限制燃料电池规模化应用。开发低成本、高性能、可实用氧还原电催化剂尤为重要。基于课题组多年在实用化燃料电池氧还原电催化剂的研究情况,综述面向当前实用和未来发展的铂-非铂电催化剂的研究进展。重点介绍实用化高载量、高活性、高结构稳定性铂基电催化剂合成策略以及在燃料电池膜电极中的性能高效表达,同时阐述非铂碳基催化剂理性设计、可控制备。此外,对该研究方向的发展进行展望,以期加速燃料电池关键材料国产化。  相似文献   

20.
混合型电容器是一种介于锂二次电池和超级电容器之间的一种新型储能器件,在电化学储能领域有非常广泛的应用。混合型电容器的电极材料包括锂二次电池电极材料和超级电容器电极材料,在混合电容器内部形成“交叉结构”。本工作分别采用干法和湿法工艺制备出(NCM+AC)混合型正极片和硬碳负极片,并装配成064060软包混合型电容器。本工作系统分析了两种电极结构的特点及其对软包混合型电容器性能的影响。实验结果表明,干法电极内部含有丰富的PTFE纤维结构,原材料颗粒之间接触更为紧密。在相同厚度下,干法电极的活性物质负载量更大,电极体积密度大、欧姆电阻及极化电阻均较小。在相同体积的软包产品内,干法电极产品的容量、能量密度较湿法电极产品均提高20%以上。在正负极面密度比及N/P放电容量比均相同的条件下,干法电极产品在高低温性能、循环性能、倍率性能及高温负荷性能方面均优于湿法电极产品。干法电极制备工艺不使用任何溶剂,绿色环保,节省成本,PTFE纤维可以牢固地兜住NCM和AC,有助于在混合型电容器电极制备中推广应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号