首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Guinea-pig distal colonic mRNA injection into Xenopus laevis oocytes resulted in expression of functional active epithelial Na+ channels in the oocyte plasma membrane. Poly(A)+ RNA was extracted from distal colonic mucosa of animals fed either a high-salt (HS) or a low-salt (LS) diet. The electrophysiological properties of the expressed amiloride-sensitive Na+ conductances were investigated by conventional two-electrode voltage-clamp and patch-clamp measurements. Injection of poly(A)+ RNA from HS-fed animals [from hereon referred to as HS-poly(A)+ RNA] into oocytes induced the expression of amiloride-sensitive Na+ conductances. On the other hand, oocytes injected with poly(A)+ RNA from LS-fed animals [LS-poly(A)+ RNA] expressed a markedly larger amount of amiloride-blockable Na+ conductances. LS-poly(A)+ RNA-induced conductances were completely inhibitable by amiloride with a Ki of 77 nM, and were also blocked by benzamil with a Ki of 1.8 nM. 5-(N-Ethyl-N-isopropyl)-amiloride (EIPA), even in high doses (25 "mu"M), had no detectable effect on the Na+ conductances. Expressed amiloride-sensitive Na+ channels could be further activated by cAMP leading to nearly doubled clamp currents. When Na+ was replaced by K+, amiloride (1 "mu"M) showed no effect on the clamp current. Single-channel analysis revealed slow gating behaviour, open probabilities (Po) between 0.4 and 0.9, and slope conductances of 3. 8 pS for Na+ and 5.6 pS for Li+. The expressed channels showed to be highly selective for Na+ over K+ with a permeability ratio PNa/PK > 20. Amiloride (500 nM) reduced channel Po to values < 0.05. All these features make the guinea-pig distal colon of LS-fed animals an interesting mRNA source for the expression of highly amiloride-sensitive Na+ channels in Xenopus oocytes, which could provide new insights in the regulatory mechanism of these channels.  相似文献   

2.
We investigated how Ca2+-sensitive transient outward current, Ito(Ca), is activated in rabbit ventricular myocytes in the presence of intracellular Na+ (Na+i) using the whole-cell patch-clamp technique at 36 degreesC. In cells dialysed with Na+-free solutions, the application of nicardipine (5 microM) to block L-type Ca2+ current (ICa) completely inhibited Ito(Ca). In cells dialysed with a [Na+]i>/=5 mM, however, Ito(Ca) could be observed after blockade of ICa, indicating the activity of an ICa-independent component. The amplitude of ICa-independent Ito(Ca) increased with voltage in a [Na+]i-dependent manner. The block of Ca2+ release from the sarcoplasmic reticulum by caffeine, ryanodine or thapsigargin blocked ICa-independent Ito(Ca). In Ca2+-free bath solution Ito(Ca) was completely abolished. The application of 2 mM Ni2+ or the newly synthesized compound KBR7943, a selective blocker of the reverse mode of Na+/Ca2+ exchange, or perfusion with pipette solution containing XIP (10 microM), a selective blocker of the exchanger, blocked ICa-independent Ito(Ca). From these results we conclude that, in the presence of Na+i, Ito(Ca) can be activated via Ca2+-induced Ca2+ release triggered by Na+/Ca2+ exchange operating in the reverse mode after blockade of ICa.  相似文献   

3.
4.
The developmental localization patterns of collagen type IV alpha1-5 chains, laminin-1, laminin-5, and laminin alpha2 chain were analyzed in the embryonic mouse eye using isoform specific antibodies and immunofluorescence microscopy. Laminin-1 isoform and alpha1-2(IV) were ubiquitously expressed along the ocular surface basement membranes at a very early stage of eye development. Alpha3-5(IV) were first detected at later stages of development, and exhibited a variable distribution pattern along the ocular surface basement membrane. In contrast, expression of the laminin alpha2 chain was restricted to the conjunctival basement membrane, and was first detected during the same developmental period in which keratin K4-positive, differentiated conjunctival epithelial cells were observed. Although laminin-5 was uniformly expressed along the adult ocular surface basement membrane, during embryogenesis it was first incorporated into the conjunctival basement membrane structure. These data suggest that some of the laminin isoforms, including laminin alpha2 and laminin-5, may play a role in the formation of a conjunctival-type basement membrane. The temporal relationship between the localization of these molecules to the conjunctival basement membrane and the appearance of differentiated conjunctival epithelial cells suggests a role for external influence on the differentiation pathways of ocular surface epithelium.  相似文献   

5.
Pre-steady-state transient currents (1986. Nakao, M., and D. C. Gadsby. Nature [Lond.]. 323:628-630) mediated by the Na/K pump were measured under conditions for Na/Na exchange (K-free solution) in voltage-clamped Xenopus oocytes. Signal-averaged (eight times) current records obtained in response to voltage clamp steps over the range -160 to +60 mV after the addition of 100 microM dihydroouabain (DHO) or removal of external Na (control) were subtracted from test records obtained before the solution change. A slow component of DHO- or Na-sensitive difference current was consistently observed and its properties were analyzed. The quantity of charge moved was well described as a Boltzmann function of membrane potential with an apparent valence of 1.0. The relaxation rate of the current was fit by the sum of an exponentially voltage-dependent reverse rate coefficient plus a voltage-independent forward rate constant. The quantity of charge moved at the on and off of each voltage pulse was approximately equal except at extreme negative values of membrane potential where the on charge tended to be less than the off. The midpoint voltage of the charge distribution function (Vq) was shifted by -24.8 +/- 1.7 mV by changing the external [Na] in the test condition from 90 to 45 mM and by +14.7 +/- 1.7 mV by changing the test [Na] from 90 to 120 mM. A pseudo three-state model of charge translocation is discussed in which Na+ is bound and occluded at the internal face of the enzyme and is released into an external-facing high field access channel (ion well). The model predicts a shift of the charge distribution function to more hyperpolarized potentials as extracellular [Na] is lowered; however, several features of the data are not predicted by the model.  相似文献   

6.
The radial localization and properties of elementary calcium release events ("puffs") were studied in Xenopus oocytes using a confocal microscope equipped with a piezoelectric focussing unit to allow rapid (>100 Hz) imaging of calcium signals along a radial line into the cell with a spatial resolution of <0.7 micrometer. Weak photorelease of caged inositol 1,4,5-trisphosphate (InsP3) evoked puffs arising predominantly within a 6-micrometer thick band located within a few micrometers of the cell surface. Approximately 25% of puffs had a restricted radial spread, consistent with calcium release from a single site. Most puffs, however, exhibited a greater radial spread (3.25 micrometer), likely involving recruitment of radially neighboring release sites. Calcium waves evoked by just suprathreshold stimuli exhibited radial calcium distributions consistent with inward diffusion of calcium liberated at puff sites, whereas stronger flashes evoked strong, short-latency signals at depths inward from puff sites, indicating deep InsP3-sensitive stores activated at higher concentrations of InsP3. Immunolocalization of InsP3 receptors showed punctate staining throughout a region corresponding to the localization of puffs and subplasmalemmal endoplasmic reticulum. The radial organization of puff sites a few micrometers inward from the plasma membrane may have important consequences for activation of calcium-dependent ion channels and "capacitative" calcium influx. However, on the macroscopic (hundreds of micrometers) scale of global calcium waves, release can be considered to occur primarily within a thin, essentially two-dimensional subplasmalemmal shell.  相似文献   

7.
In the preceding paper Fontanilla and Nuccitelli (Biophysical Journal 75:2079-2087 (1998)) present detailed measurements of the shape and speed of the fertilization Ca2+ wave in Xenopus laevis eggs. In order to help interpret their results, we develop here a computational technique based on the finite element method that allows us to carry out realistic simulations of the fertilization wave. Our simulations support the hypothesis that the physiological state of the mature egg is bistable, i.e., that its cytoplasm can accommodate two alternative physiological Ca2+ concentrations: a low concentration characteristic of the prefertilization state and a greatly elevated concentration characteristic of the state following the passage of the wave. We explore this hypothesis by assuming that the bistability is due to the release and re-uptake properties of the endoplasmic reticulum (ER) as determined by inositol trisphosphate (IP3) receptor/Ca2+ channels and sarcoendoplasmic reticulum calcium ATPase (SERCA) pumps. When combined with buffered diffusion of Ca2+ in the cytoplasm, our simulations show that inhomogeneities in the Ca2+ release properties near the plasma membrane are required to explain the temporal and spatial dependences of the shape and speed of these waves. Our results are consistent with an elevated IP3 concentration near the plasma membrane in the unfertilized egg that is augmented significantly near the site of fertilization. These gradients are essential in determining the concave shape of the Ca2+ fertilization wave front.  相似文献   

8.
Expression of G protein alpha subunits of the Gq family with various G protein-coupled receptors induces activation of an inositol 1,4, 5-trisphosphate (IP3)/Ca2+-mediated Cl- conductance in Xenopus oocytes. Our present data show that two members of this family, the human Galpha16 subunit and the murine homologue Galpha15, can induce both activation and inhibition of these agonist-induced currents. Although extremely low amounts (10-50 pg) of injected Galpha16 subunit cRNA cause modest ( approximately 2-fold) enhancement of ligand-induced Cl- currents in oocytes co-injected with thyrotropin-releasing hormone (TRH) receptor cRNA 48 h postinjection, larger Galpha16 and Galpha15 cRNA injections cause >10-fold inhibition of TRH or 5HT2c receptor responses. The inhibition is analyzed in this study. The inhibited currents are recovered if various Gbetagamma subunit combinations are also expressed with the Galpha subunits. The constitutively active mutant, Galpha16Q212L, also causes a strong attenuation of the ligand-induced Cl- currents, but this inhibition is not recovered by co-expression of Gbetagamma subunits. These results indicate that the free Galpha subunit is responsible for the inhibitory signal. Although expression of TRH receptor alone produces maximum responses approximately 48 h after injection, co-expression of TRH receptor with Galpha16 results in enhanced responses 6-12 h postinjection, followed by complete attenuation at 36 h. Furthermore, injection of Galpha16 cRNA alone at comparable levels gives rise to spontaneous Cl- currents within 6-12 h postinjection, suggesting that the early spontaneous activation underlies the later suppression. Expression of other G protein alpha subunits of the Gq family, at cRNA levels considerably higher than effective for Galpha16, produces both analogous spontaneous Cl- currents and, later, inhibition of ligand-induced Cl- currents. Experiments with direct injection of IP3 and of Ca2+ suggest that this inhibition is consistent with the down-regulation of IP3 receptors. These data indicate that both enhancement and inhibition of signaling through G protein-coupled receptors can be mediated by the expression level and/or activity of an individual G protein.  相似文献   

9.
Depletion of endoplasmic reticulum Ca2+ stores induces Ca2+ entry from the extracellular space by a process termed "store-operated Ca2+ entry" (SOCE). It has been suggested that the novel fungal metabolite adenophostin-A may be able to stimulate Ca2+ entry without stimulating Ca2+ release from stores. To test this idea further, we compared Ca2+ release, SOCE, and the stimulation of Ca2+-activated Cl- currents in Xenopus oocytes in response to inositol 1,4,5-trisphosphate (IP3) and adenophostin-A injection. IP3 stimulated an outward Cl- current, ICl1-S, in response to Ca2+ release from stores followed by an inward current, ICl2, in response to SOCE. In contrast, low concentrations of adenophostins (AdAs) activated ICl2 without activating ICl1-S, consistent with the suggestion that AdA can activate Ca2+ entry without stimulating Ca2+ release. However, when Ca2+ entry has been stimulated by AdA, Ca2+ stores are largely depleted of Ca2+, as assessed by the inability of ionomycin to release additional Ca2+. The Ca2+ release stimulated by AdA, however, was 7 times slower than the release stimulated by IP3, which could explain the minimal activation of ICl1-S; when Ca2+ is released slowly, the threshold level required for ICl1-S activation is not attained.  相似文献   

10.
The role of sodium-calcium exchanger in calcium homeostasis in Bergmann glial cells in situ was investigated by monitoring cytoplasmic calcium ([Ca2+]i) and sodium ([Na+]i) concentrations. The [Ca2+]i and [Na+]i transients were measured either separately by using fluorescent indicators fura-2 and SBFI, respectively, or simultaneously using the indicators fluo-3 and SBFI. Since the removal of extracellular Na+ induced a relatively small (approximately 50 nM) elevation of [Ca2+]i, the Na+/Ca2+ exchanger seems to play a minor role in regulation of resting [Ca2+]i. In contrast, kainate-triggered [Ca2+]i increase was significantly suppressed by lowering of the extracellular Na+ concentration ([Na+]o). In addition, manipulations with [Na+]o dramatically affected the recovery of the kainate-induced [Ca2+]i transients. Simultaneous recordings of [Ca2+]i and [Na+]i revealed that kainate-evoked [Ca2+]i transients were accompanied with an increase in [Na+]i. Moreover, kainate induced significantly larger [Ca2+]i and smaller [Na+]i transients under current-clamp conditions as compared to those recorded when the membrane voltage was clamped at -70 mV. The above results demonstrate that the Na(+)-Ca2+ exchanger is operative in Bergmann glial cells in situ and is able to modulate dynamically the amplitude and kinetics of [Ca2+]i signals associated with an activation of ionotropic glutamate receptors.  相似文献   

11.
The specific inhibitor of the gamma-aminobutyric acid (GABA) carrier, NNC-711, (1-[(2-diphenylmethylene)amino]oxyethyl)- 1,2,5,6-tetrahydro-3-pyridine-carboxylic acid hydrochloride, blocks the Ca(2+)-independent release of [3H]GABA from rat brain synaptosomes induced by 50 mM K+ depolarization. Thus, in the presence of this inhibitor, it was possible to study the Ca(2+)-dependent release of [3H]GABA in the total absence of carrier-mediated release. Reversal of the Na+/Ca2+ exchanger was used to increase the intracellular free Ca2+ concentration ([Ca2+]i) to test whether an increase in [Ca2+]i alone is sufficient to induce exocytosis in the absence of depolarization. We found that the [Ca2+]i may rise to values above 400 nM, as a result of Na+/Ca2+ exchange, without inducing release of [3H]GABA, but subsequent K+ depolarization immediately induced [3H]GABA release. Thus, a rise of only a few nanomolar Ca2+ in the cytoplasm induced by 50 mM K+ depolarization, after loading the synaptosomes with Ca2+ by Na+/Ca2+ exchange, induced exocytotic [3H]GABA release, whereas the rise in cytoplasmic [Ca2+] caused by reversal of the Na+/Ca2+ exchanger was insufficient to induce exocytosis, although the value for [Ca2+]i attained was higher than that required for exocytosis induced by K+ depolarization. The voltage-dependent Ca2+ entry due to K+ depolarization, after maximal Ca2+ loading of the synaptosomes by Na+/Ca2+ exchange, and the consequent [3H]GABA release could be blocked by 50 microM verapamil. Although preloading the synaptosomes with Ca2+ by Na+/Ca2+ exchange did not cause [3H]GABA release under any conditions studied, the rise in cytoplasmic [Ca2+] due to Na+/Ca2+ exchange increased the sensitivity to external Ca2+ of the exocytotic release of [3H]GABA induced by subsequent K+ depolarization. Thus, our results show that the vesicular release of [3H]GABA is rather insensitive to bulk cytoplasmic [Ca2+] and are compatible with the view that GABA exocytosis is triggered very effectively by Ca2+ entry through Ca2+ channels near the active zones.  相似文献   

12.
13.
The tetrodotoxin-sensitive sodium ion (Na+) channel is opened by cellular depolarization and favors the passage of Na+ over other ions. Activation of the beta-adrenergic receptor or protein kinase A in rat heart cells transformed this Na+ channel into one that is promiscuous with respect to ion selectivity, permitting calcium ions (Ca2+) to permeate as readily as Na+. Similarly, nanomolar concentrations of cardiotonic steroids such as ouabain and digoxin switched the ion selectivity of the Na+ channel to this state of promiscuous permeability called slip-mode conductance. Slip-mode conductance of the Na+ channel can contribute significantly to local and global cardiac Ca2+ signaling and may be a general signaling mechanism in excitable cells.  相似文献   

14.
The interaction of large depolarization and dihydropyridine Ca2+ agonists, both of which are known to enhance L-type Ca2+ channel current, was examined using a conventional whole-cell clamp technique. In guinea pig detrusor cells, only L-type Ca2+ channels occur. A second open state (long open state: O2) of the Ca2+ channels develops during large depolarization (at +80 mV, without Ca2+ agonists). This was judged from lack of inactivation of the Ca2+ channel current during the large depolarizing steps (5 s) and slowly deactivating inward tail currents (= 10-15 ms) upon repolarization of the cell membrane to the holding potential (-60 mV). Application of Bay K 8644 (in 2.4 mM Ca(2+)-containing solutions) increased the amplitude of the Ca2+ currents evoked by simple depolarizations, and made it possible to observe inward tail currents (= 2.5-5 ms at -60 mV). The open state induced by large depolarization (O2*) in the Bay K 8644 also seemed hardly to inactivate. After preconditioning with large depolarizing steps, the decay time course of the inward tail currents upon repolarization to the holding potential (-60 mV) was significantly slowed, and could be fitted reasonably with two exponentials. The fast and slow time constants were 10 and 45 ms, respectively, after 2 s preconditioning depolarizations. Qualitatively the same results were obtained using Ba2+ as a charge carrier. Although the amplitudes of the inward currents observed in the test step and the subsequent repolarization to the holding potential were decreased in the same manner by additional application of nifedipine (in the presence of Bay K 8644), the very slow deactivation time course of the tail current was little changed. The additive enhancement by large depolarization and Ca2+ agonists of the inward tail current implies that two mechanisms separately induce long opening of the Ca2+ channels: i.e., that there are four open states.  相似文献   

15.
BACKGROUND: Evaluation of outcome after CPR in severe hypothermic patients. DESIGN: Perspective study from October 1995 to April 1996. SETTING: First aid team of Italian Red Cross, Busto Arsizio (Varese), Italy. METHODS: A population of 22 patients in cardiac arrest in which CPR was performed immediately after rescue team's arrival is studied. ECG, core temperature, SpO2 and MAP were monitored whereas vital parameters were present during Basic Life Support. Outcome after CPR was evaluated with GOS scale. RESULTS: It has been observed that severe hypothermia and time of cardiac arrest impact on the clinical outcome after CPR. The high mortality rate after CPR with BLS standard is worsened by a core temperature < or = 33 degrees C. CONCLUSIONS: Severe hypothermia seems to have a dangerous effect upon outcome after cardiopulmonary resuscitation; heating systems for body temperature could prevent this situation improving CPR results.  相似文献   

16.
We investigated the source of Ca2+ for the vasoconstriction mediated by alpha1a-adrenoceptors in perfused rat hindlimb in functional studies. The noradrenaline (NA)-induced maximum response was decreased by 92% following perfusion with Ca2+-free medium. Depletion of intracellular Ca2+-stores with repeatedly application of caffeine and NA in Ca2+-free medium resulted in complete abolishment of NA-response. Nifedipine concentration-dependently inhibited NA-contraction with a maximum inhibition of 65%. The residual nifedipine-insensitive response was further inhibited by Cd2+. Following depletion of Ca2+ stores with cyclopiazonic acid in Ca2+ free medium for 30 min, the NA-response obtained by re-admission of Ca2+ was decreased by 80%. However, re-introduction of Ca2+ to NA-treated tissues in Ca2+-free medium without prior treatment with cyclopiazonic acid normalizes the NA-response. These results suggest that the NA-contraction in this preparation is mediated largely via an influx of extracellular Ca2+, of which the majority utilizes L-type calcium channels. Only a small portion of the contractile response to NA is derived from intracellular stores, which probably also play a modulatory role on Ca2+ influx.  相似文献   

17.
The role of the Na+/Ca2+ exchanger and intracellular nonmitochondrial Ca2+ pool in the regulation of cytosolic free calcium concentration ([Ca2+]i) during catecholamine secretion was investigated. Catecholamine secretion and [Ca2+]i were simultaneously monitored in a single chromaffin cell. After high-K+ stimulation, control cells and cells in which the Na+/Ca2+ exchange activity was inhibited showed similar rates of [Ca2+]i elevation. However, the recovery of [Ca2+]i to resting levels was slower in the inhibited cells. Inhibition of the exchanger increased the total catecholamine secretion by prolonging the secretion. Inhibition of the Ca2+ pump of the intracellular Ca2+ pool with thapsigargin caused a significant delay in the recovery of [Ca2+]i and greatly enhanced the secretory events. These data suggest that both the Na+/Ca2+ exchanger and the thapsigargin-sensitive Ca2+ pool are important in the regulation of [Ca2+]i and, by modulating the time course of secretion, are important in determining the extent of secretion.  相似文献   

18.
The membrane spanning complement channel is assumed to be a nonselective ion 'pore', although little evidence is available to support this hypothesis. In this paper we provide evidence that Ca2+ entry and Cl- exit occur rapidly after complement activation and precede the development of a long-lasting complement-dependent inward current. Addition of rabbit serum (a source of heterologous complement) and mouse anti-human insulin receptor antibody to a single Xenopus oocyte expressing human insulin receptor was shown to stimulate an initial hyperpolarising current followed by a sustained depolarising current. On voltage clamping the oocyte, a novel long-lasting inward current generated by serum addition was detected. Complement classical pathway-stimulated calcium influx into the oocyte was directly demonstrated using 45Ca influx measurements. In addition, we found that Ca2+ influx was required for the stimulation of the complement alternative pathway-dependent inward current. The novel conductance elicited by the classical pathway was outwardly rectifying, had a reversal potential of -35 +/- 8 mV (or -52 +/- 7 mV in the presence of chloride channel inhibitors), was inhibited by nifedipine, and was observed in the presence but not in the absence of the pore-forming complement component C9. As overactivation of complement does play a role in many inflammatory or autoimmune diseases, inhibition of early complement-mediated ion flux might restrict tissue damage and aid recovery from such diseases.  相似文献   

19.
20.
Stimulation of human submandibular gland cells with carbachol, inositol trisphosphate (IP3), thapsigargin, or tert-butylhydroxyquinone induced an inward current that was sensitive to external Ca2+ concentration ([Ca2+]e) and was also carried by external Na+ or Ba2+ (in a Ca2+-free medium) with amplitudes in the order Ca2+ > Ba2+ > Na+. All cation currents were blocked by La3+ and Gd3+ but not by Zn2+. The IP3-stimulated current with 10 microM 3-deoxy-3-fluoro-D-myo-inositol 1,4,5-triphosphate and 10 mM 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid in the pipette solution, showed 50% inactivation in <5 min and >5 min with 10 and 1 mM [Ca2+]e, respectively. The Na+ current was not inactivated, whereas the Ba2+ current inactivated at a slower rate. The protein kinase inhibitor, staurosporine, delayed the inactivation and increased the amplitude of the current, whereas the protein Ser/Thr phosphatase inhibitor, calyculin A, reduced the current. Thapsigargin- and tert-butylhydroxyquinone-stimulated Ca2+ currents inactivated faster. Importantly, these agents accelerated the inactivation of the IP3-stimulated current. The data demonstrate that internal Ca2+ store depletion-activated Ca2+ current (ISOC) in this salivary cell line is regulated by a Ca2+-dependent feedback mechanism involving a staurosporine-sensitive protein kinase and the intracellular Ca2+ pump. We suggest that the Ca2+ pump modulates ISOC by regulating [Ca2+]i in the region of Ca2+ influx.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号