首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Production of second generation ethanol and other added value chemicals from sugarcane bagasse and straw integrated to first generation sugarcane biorefineries presents large potential for industrial implementation, since part of the infrastructure where first generation ethanol is produced may be shared between both plants. In this context, butanol from renewable resources has attracted increasing interest, mostly for its use as a drop in liquid biofuel for transportation, since its energy density is greater than that of ethanol, but also for its use as feedstock in the chemical industry. In this paper, vapor-phase catalytic production of butanol from first and second generation ethanol in a sugarcane biorefinery was assessed, using data available from the literature. The objective is to evaluate the potential of butanol either as fuel or feedstock for industry, taking into account economical/environmental issues through computer simulation. The results obtained show that, although promising, butanol sold as chemical has a limited market and as fuel presents economic constraints. In addition, investments on the butanol conversion plant could be an obstacle to its practical implementation. Nevertheless, environmental assessment pointed out advantages of its use as fuel for road transportation, if compared with gasoline in terms of global environmental impacts such as global warming.  相似文献   

2.
BACKGROUND: Butanol fermentation is product limiting owing to butanol toxicity to microbial cells. Butanol (boiling point: 118 °C) boils at a higher temperature than water (boiling point: 100 °C) and application of vacuum technology to integrated acetone–butanol–ethanol (ABE) fermentation and recovery may have been ignored because of direct comparison of boiling points of water and butanol. This research investigated simultaneous ABE fermentation using Clostridium beijerinckii 8052 and in situ butanol recovery by vacuum. To facilitate ABE mass transfer and recovery at fermentation temperature, batch fermentation was conducted in triplicate at 35 °C in a 14 L bioreactor connected in series with a condensation system and vacuum pump. RESULTS: Concentration of ABE in the recovered stream was greater than that in the fermentation broth (from 15.7 g L?1 up to 33 g L?1). Integration of the vacuum with the bioreactor resulted in enhanced ABE productivity by 100% and complete utilization of glucose as opposed to a significant amount of residual glucose in the control batch fermentation. CONCLUSION: This research demonstrated that vacuum fermentation technology can be used for in situ butanol recovery during ABE fermentation and that C. beijerinckii 8052 can tolerate vacuum conditions, with no negative effect on cell growth and ABE production. Copyright © 2011 Society of Chemical Industry  相似文献   

3.
渗透汽化法从丙酮-丁醇-乙醇中分离浓缩丁醇   总被引:1,自引:0,他引:1  
发酵法生产丁醇的产物质量浓度很低,为了实现丁醇的高效分离浓缩,文中采用渗透汽化膜分离技术对模型发酵液(丙酮、丁醇、乙醇混合溶液,ABE)进行浓缩实验。结果表明:随着温度、真空度、错流速度、料液质量浓度的增大,丁醇通量上升;渗透汽化膜对丁醇选择性在温度50℃时最佳,并随真空度的减小而减小,随料液质量浓度的增大而降低。实验证明,渗透汽化法能实现丁醇的高效分离浓缩,并且利用串联阻力溶解扩散模型可较好地预测ABE溶液体系中各组分的传质和分离效果。  相似文献   

4.
An effective in situ recovery of acetone, butanol and ethanol (ABE) from fermentation broth is requisite to overcome the low productivity of ABE production. Pervaporation has proven to be one of the best methods for recovering ABE from fermentation broth. We fabricated an immobilized ionic liquid-polydimethylsiloxane (PDMS) membrane in which a [Tf2N]? based ionic liquid covalently bound to the PDMS backbone polymer and used it to recover ABE from aqueous solution by pervaporation. Permeate flux of immobilized IL-PDMS membrane was 7.8 times higher than that of conventional supported IL-PDMS membrane (where ILs are physically absorbed on the supported membrane). Butanol enrichment factor of immobilized IL-PDMS membrane was three-times higher than that of PDMS membrane. In addition, high enrichment factor both to acetone and ethanol as well as high operational stability of immobilized IL-PDMS membrane can enhance the efficacy of ABE recovery by employing this membrane.  相似文献   

5.
BACKGROUND: To use butanol as a liquid fuel and feedstock, it is necessary to establish processes for refining low‐concentration butanol solutions. Pervaporation (PV) employing hydrophobic silicalite membranes for selective recovery of butanol is a promising approach. In this study, the adsorption behavior of components present in clostridia fermentation broths on membrane material (silicalite powder) was investigated. The potential of PV using silicone rubber‐coated silicalite membranes for the selective separation of butanol from model acetone–butanol–ethanol (ABE) solutions was investigated. RESULTS: The equilibrium adsorbed amounts of ABE per gram of silicalite from aqueous solutions of binary mixtures at 30 °C increased as follows: ethanol (95 mg) < acetone (100 mg) < n‐butanol (120 mg). The amount of butanol adsorbed is decreased by the adsorption of acetone and butyric acid. In the separation of ternary butanol/water/acetone mixtures, the enrichment factor for acetone decreased, compared with that in binary acetone/water mixtures. In the separation of a model acetone–butanol–ethanol (ABE) fermentation broth containing butyric acid by PV using a silicone rubber‐coated silicalite membrane, the permeate butanol concentration was comparable with that obtained in the separation of a model ABE broth without butyric acid. The total flux decreased with decreasing feed solution pH. CONCLUSION: A silicone rubber‐coated silicalite membrane exhibited highly selective PV performance in the separation of a model ABE solution. It is very important to demonstrate the effectiveness of PV in the separation of actual clostridia fermentation broths, and to identify the factors affecting PV performance. Copyright © 2011 Society of Chemical Industry  相似文献   

6.
CO, H2, and CO2 are major components of syngas and some industrial CO‐rich waste gases (e.g. waste gases from steel industries), besides some additional minor compounds. It was recently shown that those gases can be bioconverted, by acetogenic/solventogenic bacteria, into ethanol and higher alcohols such as butanol, but also hexanol, through the so‐called HBE fermentation. That process presents some advantages over existing chemical conversion processes. This paper reviews HBE fermentation from C1‐gases after briefly describing the more conventional ABE (acetone‐butanol‐ethanol) fermentation from carbohydrates by Clostridium acetobutylicum, in order to allow for comparison of both processes. Although acetone may appear in carbohydrate fermentation, alcohols are the only major end‐metabolites in the HBE process with Clostridium carboxidivorans. The few acetogenic bacteria known to metabolize C1‐gases and produce butanol or higher alcohols are described. Clostridium carboxidivorans has been used in most cases. Bioconversion of the gaseous substrates takes place in two stages, namely acidogenesis (production of acids) followed by solventogenesis (production of alcohols), characterized by different optimal fermentation conditions. Major parameters affecting each bioconversion stage as well as the overall fermentation process are analyzed. Although it has been claimed that acidification is required in ABE fermentation to initiate the solventogenic stage, strong acidification seems to some extent not to be a prerequisite for solventogenesis in the HBE process. Bioreactors potentially suitable for this type of bioconversion process are described as well. © 2017 Society of Chemical Industry  相似文献   

7.
In this study, pretreatment liquor of acid-stored green and yellowish barley silage was used for fermentative acetone–butanol–ethanol (ABE) production. Further, the catalytic oxidation of biobutanol over Pt catalysts was studied to investigate the behaviour of butanol as a fuel in the combustion engine. After the hydrothermal treatment of green and yellowish barley silage followed by enzymatic hydrolysis, approximately 88% and 100% of the available sugars were recovered, respectively. Batch fermentations of pretreatment barley silage liquor, supplemented with gelatinised barley grain, showed good fermentability with total ABE concentrations of 9.0 g/L and 10.9 g/L. Butanol yields of 0.20, 0.17 and ABE yields of 0.28, 0.26 (g/g monosaccharide) were obtained, respectively. In catalytic activity measurements, the conversion of biobutanol became appreciable in the 120–140 °C range, whereas conversions greater than 95% were obtained over 200 °C. Selectivities were also high, although formation of by-products, such as butyraldehyde, was observed.  相似文献   

8.
控制丁醇发酵过程中的氧化还原电位(oxidoreduction potential, ORP)能够大幅提高丁醇产量和果糖利用率,并降低终点有机酸浓度。实验考察了以葡萄糖和果糖混合糖为底物,通过泵入无菌空气控制ORP分别不低于-490、-460、-430及-400 mV丁醇发酵情况。其中,控制ORP不低于-460 mV时,丁醇和总溶剂产量分别达到13.19 g·L-1及19.71 g·L-1,相对于不控制ORP的丁醇自然发酵分别提高了139.38%及117.07%,残糖浓度降低至3.20 g·L-1,糖利用率高达94.18%。该调控策略有效地解决了以葡萄糖和果糖混合糖为底物的丁醇发酵过程中存在的残糖浓度高、丁醇产量低的问题。  相似文献   

9.
The second generation biofuel butanol can be produced by acetone‐butanol‐ethanol (ABE) fermentation, but the separation from the broth is still challenging. Therefore, dipotassium hydrogen phosphate was investigated as salting‐out agent. The ABE fermentation broth was enriched by a prefractionator after being preheated. The enriched ABE solution was salted out by K2HPO4 solutions at different temperatures. The water in the supplemented ABE solution was largely removed by the salting‐out method. The energy requirements for the prefractionator and the butanol column were significantly reduced. The total energy demand for the recovery of acetone, butanol, and ethanol by salting‐out and subsequent distillation was optimized. With the salting‐out process, the entire salting‐out and distillation method turned out to be more energy‐saving than the conventional one.  相似文献   

10.
硅橡胶渗透汽化复合膜在丁醇发酵中的应用   总被引:1,自引:0,他引:1  
丁醇发酵受产物丁醇的抑制,产率和产物浓度低,过程经济性差,为减轻丁醇的抑制,制备了聚二甲基硅氧烷/聚偏氟乙烯(PIMS/PVDF)复合膜用于丙酮-丁醇-乙醇-水体系有机成分的分离.以分离因子和渗透通量为评价指标,考察了料液温度、质量分数和pH值对复合膜渗透汽化分离性能的影响.结果表明:料液温度升高能提高膜的分离性能;料...  相似文献   

11.
陈强  董晋军  许国超  韩瑞枝  倪晔 《化工进展》2015,34(12):4214-4219
糖丁基梭菌Clostridium saccharobutylicum DSM 13864能利用多种糖类为底物发酵产丁醇。本文研究了该菌体细胞表面的理化特性,并以砖块作为细胞固定化材料进行丁醇发酵。采用细菌吸附有机溶剂(MATS)法证明糖丁基梭菌细胞表面有强烈的亲水性,并且等电点在pH值为3左右,这些特性有利于菌体与表面亲水多孔的砖块吸附。在60g/L葡萄糖发酵培养基中,以5~8目砖块作为固定化材料,流速为1.1L/min,发酵48h后,丁醇的浓度、得率和生产率分别达到11.02g/L、0.18g/g和0.23g/(L·h),相比悬浮细胞发酵分别提高了10.53%、5.88%和9.52%。结果表明:砖块作为一种固定化材料可有效提高糖丁基梭菌的发酵产丁醇水平。  相似文献   

12.
Sugarcane bagasse and trash are used as fuels in cogeneration systems for bioethanol production, supplying steam and electricity, but may also be used as feedstock for second generation ethanol. The amount of surplus lignocellulosic material used as feedstock depends on the energy consumption of the production process; residues of the pretreatment and hydrolysis operations (residual cellulose, lignin and eventually biogas from pentoses biodigestion) may be used as fuels and increase the amount of lignocellulosic material available as feedstock in hydrolysis. The configuration of the cogeneration system (boiler pressure, lignocellulosic material consumption and steam production, turbines efficiencies, among others) has a significant impact on consumption of fuel and electricity output; in the integrated first and second generation, it also affects overall ethanol production. Simulations of the integrated first and second generation ethanol production processes were carried out using Aspen Plus, comparing different configurations of the cogeneration systems and pentoses use (biodigestion and fermentation). Economic analysis shows that electricity sale can benefit second generation ethanol, even in relatively small amounts. Environmental analysis shows that the integrated first and second generation process has higher environmental impacts in most of the categories evaluated than first generation.  相似文献   

13.
The alternative fuel butanol can be produced via acetone-butanol-ethanol (ABE) fermentation from biomass. The high costs for the separation of ABE from the dilute fermentation broth have so far prohibited the industrial-scale production of bio-butanol. In order to facilitate an effective and energy-efficient product removal, we suggest a hybrid extraction-distillation downstream process with ABE extraction in an external column. By means of computer-aided molecular design (CAMD), mesitylene is identified as novel solvent with excellent properties for ABE extraction from the fermentation broth. An optimal flowsheet is developed by systematic process synthesis which combines shortcut and rigorous models with rigorous numerical optimization. Optimization of the flowsheet structure and the operating point, consideration of heat integration, and the evaluation of the minimum energy demands are covered. It is shown that the total annualized costs of the novel process are considerably lower compared to the costs of alternative hybrid or pure distillation processes.  相似文献   

14.
The demand for the large-scale biofuels production is very high. The use of ethanol and butanol in flex-fuel vehicles have already been achieved, but still need improvement to decrease the gasoline-dependence. In addition to it, the preparation of ethanol and butanol by eco-friendly routes are still a challenge. The use of ABE route, in which acetone, butanol, and ethanol are prepared by fermentation of 5 or 6 carbon sugars, requires higher yields and better separation performance. The goal of this work was to evaluate the use of pervaporation through asymmetric activated carbon (AC) dispersed polymethylsiloxane membranes for the separation of ABE aqueous solution with 1 wt% total organics. The amount of the filler was varied from 0 to 3 wt%. Membranes were characterized by scanning electronic microscopy, Fourier transformed infrared spectroscopy, swelling in solvents, thermogravimetric analysis, and differential scanning calorimetry. Membrane with 1 wt% of AC membrane showed different behaviors both in thermal resistance, which was increased, and also in pervaporation separation index (PSI). In this condition, membrane total flux, separation factor, and PSI for ethanol were 13.2, 2.6, and 19.9 g m−2 h−1, so that sorption behavior and diffusion rates were changed. Thus, it was possible to modulate membrane properties.  相似文献   

15.
In this work, we discuss the processes for the production of bioethanol and biobutanol, which are promising alternative fuels, using biocatalysts based on cells of various microorganisms immobilized in poly(vinyl alcohol) cryogel. Biocatalysts based on immobilized cells reliably allow ethanol production from a variety of industrial and agricultural wastes (wheat straw, beet and sugarcane bagasse, parchment, corn cobs, soybean processing waste) with a high degree of conversion of consumed substrates to the target product. Ethanol concentrations are appreciably higher in media with biocatalysts than in free cells of the same microorganisms. It is found that immobilized cells of filamentous fungi can convert a wider range of the sugars contained in processed media to ethanol than commonly used yeasts. It is shown that the immobilization of the genus Clostridium cells that produce butanol enables us to reliably change the ratio of solvents that accumulate in the medium during acetone-butanol-ethanol fermentation in the direction of a greater amount of butanol, thereby improving the process’s characteristics relative to present-day technologies based on free bacterial cells.  相似文献   

16.
采用发酵产物中的二氧化碳(CO2)和氢气(H2)作为循环气提气源,对丙酮丁醇梭菌(Clostridium acetobutylicum CGMCC 5234)发酵产物进行原位气提,实现丙酮、丁醇和乙醇混合物(ABE)的连续纤维床固定化发酵生产。连续发酵实验进行了12批次共309 h,总溶剂ABE当量浓度为133.3 g·L-1(其中丁醇 83.5 g·L-1,丙酮38.4 g·L-1,乙醇11.4 g·L-1),葡萄糖消耗率为1.29 g·(L·h) -1,总溶剂ABE产率为0.431 g·(L·h) -1,转化率为0.333 g·g-1,其中丁醇产率为0.270 g·(L·h) -1,转化率为 0.209 g·g-1,发酵液中丁醇浓度控制在8~12 g·L-1,显著优于游离发酵的结果。气提提取之后冷凝的ABE溶液出现分层现象,其中丁醇相丁醇浓度高达603.7 g·L-1,极大地减缓后续分离提纯的负担。结果表明,自产气循环气提与纤维床固定化耦合连续发酵生产ABE(特别是丁醇)的工艺具有可行性和竞争力。  相似文献   

17.
Liquid–liquid extraction (LLE) of mixtures of butanol, 1,3-propanediol (PDO), and ethanol was performed using soybean-derived biodiesel as the extractant. The composition of the mixtures simulated the product of the anaerobic fermentation of biodiesel-derived crude glycerol, which has recently been reported for the first time by the authors. Using a biodiesel: with an aqueous phase volume ratio of 1:1, butanol recovery ranged from 45 to 51% at initial butanol concentrations of 150 and 225 mM, respectively. Less than 10% of the ethanol was extracted, and essentially no PDO was extracted. The partition coefficient for butanol in biodiesel was determined to be 0.91 ± 0.097. This partition coefficient is less than that of oleyl alcohol, which is considered the standard for LLE. However, butanol is suitable for blending with biodiesel, which would eliminate the need for separating the butanol after extraction. Additionally, biodiesel is much less costly than oleyl alcohol. If biodiesel-derived glycerol is used as the feedstock for butanol production, and biodiesel is used as the extractant to recover butanol from the fermentation broth, production of a biodiesel/butanol fuel blend could be a fully integrated process within a biodiesel facility. This process could ultimately help reduce the cost of butanol separation and ultimately help improve the overall economics of butanol fermentation using renewable feedstocks.  相似文献   

18.
王祉诺  王辉  庞纪峰  刘世民  郑明远 《化工进展》2019,38(12):5380-5389
乙醇的规模化生产和其在汽油中有限的添加量推动了乙醇的高值化利用。由于丁醇具有独特的物化性能,将乙醇一步催化转化为丁醇受到人们的普遍关注。本文主要综述了乙醇催化转化到丁醇的最新研究进展,阐述了不同均相催化剂、羟基磷灰石、氧化物和金属促进氧化物催化剂对乙醇转化率和丁醇选择性的影响,探讨了典型催化剂上乙醇催化转化到丁醇中的双分子机理和Guerbet机理,总结了乙醇催化转化到丁醇中存在的问题、机遇和挑战。提出未来乙醇催化转化的研究重点应该放在高乙醇转化率下丁醇的选择性控制上,即利用均相催化剂研究策略,借助近原位条件下反应机理研究的结果,设计合成新型催化剂体系,实现乙醇到丁醇的高效转化。  相似文献   

19.
Some of the most recent, relevant, industrial and academic contributions made in the field of butanol production are reviewed here. The focus on butanol is due to the growing demand for non‐fossil biofuels. In addition, butanol can be mixed with fossil fuels or can be used alone, allowing an alternative to gasoline. Butanol can be synthesised biologically using sugars extracted from biomass such as agricultural waste. This agricultural waste must be pretreated before it is suitable for sugar extraction. Following this stage, enzymatic hydrolysis is employed, before performing fermentation using microorganisms. This article summarises some of the economical methods such as simultaneous saccharification and fermentation (SSF). Different pretreatment and saccharification processes were compared. Acid pretreatment and saccharification achieved the highest sugar concentrations from wheat straw. Monoethanolamine pretreatment achieved highest sugars from hardwood. Comparisons and analysis of different types of fermentation processes illustrated that immobilised reactor provided the best butanol rate of production. Integration of fermentation with product removal process improved butanol production in immobilised reactor. Gas stripping method was illustrated to be the product removal process. © 2011 Canadian Society for Chemical Engineering  相似文献   

20.
Biobutanol is a biofuel with potential to substitute gasoline. It can be generated through fermentation of lignocellulosic material, by which acetone, butanol, and ethanol (ABE) are obtained and subsequently separated. Nevertheless, the blend ethanol/butanol itself is a fuel, so its separation could be not even necessary. An alternative is proposed to simplify the purification step of the ABE mixture, avoiding the separation of the ethanol/butanol blend. Intensification alternatives are suggested for the resulting structure. The proposed schemes are optimized through a stochastic approach, minimizing the total annual cost and the eco‐indicator 99. The individual risk index is computed for selected designs. The suggested designs reduce the individual risk index by around 30–66 %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号