首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inclusion of polyethylene oxide into a kinetic inhibitor solution was found to enhance the performance of the inhibitor. Polyethylene oxide is a commercially available high molecular weight polymer that is not a kinetic inhibitor by itself. The hydrate formation experiments in the presence of the various inhibitor solutions were conducted in a vessel in a semi-batch manner at constant pressure and using methane and methane-ethane gas mixtures. In some experiments a non-aqueous liquid phase (n-heptane) was also present. The induction time, the gas uptake and the temperature were measured. It was found that the induction time is prolonged in the presence of the additive by an order of magnitude in some cases compared to the inhibitor only.  相似文献   

2.
Gas hydrate reserves are potential source of clean energy having low molecular weight hydrocarbons trapped in water cages. In this work, we report how organic compounds of different chain lengths and hydrophilicities when used in small concentration may modify hydrate growth and either act as hydrate inhibitors or promoters. Hydrate promoters foster the hydrate growth kinetics and are used in novel applications such as methane storage as solidified natural gas, desalination of sea water and gas separation. On the other hand, gas hydrate inhibitors are used in oil and gas pipelines to alter the rate at which gas hydrate nucleates and grows. Inhibitors such as methanol and ethanol which form strong hydrogen bond with water have been traditionally used as hydrate inhibitors. However, due to relatively high volatility a significant portion of these inhibitors ends up in gas stream and brings further complexity to the safe transportation of natural gas. In this study, organic additives such as oxalic acid, succinic acid and L-aspartic acid (all three) having—COOH group(s) with aspartic acid having an additional—NH2 group, are investigated for gas hydrate promotion/inhibition behavior. These compounds are polar in nature and thus have significant solubility in liquid water; the presence of weak acidic and water loving (carboxylic/amine groups) moieties makes these organic acids an excellent candidate for further study. This study would pave ways to identify a novel(read better) promoter/inhibitor for gas hydrate formation. Suitable thermodynamic conditions were generated in a stirred tank reactor coupled with cooling system; comparison of gas hydrate formation kinetics with and without additives were carried out to identify the effect of these acids on the formation and growth of hydrates. The possible mechanisms by which these additives inhibit or promote the hydrate growth are also discussed.  相似文献   

3.
罗艳托  朱建华  陈光进 《化工学报》2006,57(5):1153-1158
研究了透明鼓泡塔中含促进剂四氢呋喃(THF)体系中甲烷水合物的生成动力学.分别考察了进气速率、温度、压力、水合物体积分数对甲烷消耗速率的影响.根据Chen-Guo水合物生成机理,采用基础水合物生成反应的量纲1 Gibbs自由焓变-ΔG/RT作为反应的推动力,建立了水合物生成动力学模型,模型中考虑了体系温度、压力和气液接触比表面积的影响.把模型应用于甲烷气体消耗速率的计算,其模型预算结果与实验数据吻合良好,实验结果和反应动力学模型将有助于工业水合反应器的设计和操作条件的设定.  相似文献   

4.
Hydrate formation kinetic modelling studies reported so far mainly concentrates on pure water-gas systems in stirred-tank batch environments. This work proposes a model for gas hydrate formation kinetics of a hydrate promoter-water-natural gas system in a semi-batch reactor assuming steady-state, isothermal and isobaric conditions. The hydrate formation kinetics was modelled after extending the recent method proposed by Kashchiev and Firoozabadi (J. Crystral Growth 241 (2002a) 220; J. Crystal Growth 243 (2002b) 476; J. Crystal Growth 250 (2003) 499) for a single component gas-water system to a multi-component gas-water-additive system. The extended Kashchiev and Firoozabadi model was applied for a semi-batch spray reactor here for the first time. The hydrate formation experiments were carried out in a pilot plant spray reactor at three different pressure-temperature regimes to determine the actual hydrate formation kinetics in the spray reactor. The experiment results were then used to finetune the adjustable parameters to facilitate accurate model predictions.  相似文献   

5.
Methane hydrate equilibrium has been studied upon continuous heating of the water-hydrate-gas system within the temperature range of 275-300 K. This temperature range corresponds to equilibrium pressures of 3.15-55 MPa. The hydrate formation/dissociation experiments were carried out in a high-pressure reactor under isochoric conditions and with no agitation. A small amount of surfactant (0.02 wt% sodium dodecyl sulfate, SDS) was added to water to promote hydrate formation. It was demonstrated that SDS did not have any influence on the gas hydrate equilibrium, but increased drastically both the hydrate formation rate and the amount of water converted into hydrate, when compared with the experiments without surfactant. To understand and clarify the influence of SDS on hydrate formation, macroscopic observations of hydrate growth were carried out using gas propane as hydrate former in a fully transparent reactor. We observed that 10-3 wt% SDS (230 times less than the Critical Micellar Concentration of SDS) were sufficient to prevent hydrate particles from agglomerating and forming a rigid hydrate film at the liquid-gas interface. In the presence of SDS, hydrates grew mainly on the reactor walls as a porous structure, which sucked the solution due to capillary forces. Hydrates grew with a high rate until about 97 wt% of the water present in the reactor was transformed into hydrate.Our data on methane hydrate equilibrium both confirm already published literature data and complement them within the pressure range of 20-55 MPa.  相似文献   

6.
An original experimental set-up was developed and used for studying crystallization and rheology of methane hydrate/water/dodecane system. Methane is injected in a water in dodecane emulsion at low temperature and high pressure in order to form methane hydrate crystals and to move the suspension by gas lift. It behaves as a Newtonian fluid. Dynamic viscosity and conversion of water and gas into gas hydrate crystals were measured during the process for various water contents. Experimental results were explained by means of a model including nucleation, growth and agglomeration. Due to the high value of crystal and drop concentrations, agglomeration takes place through three-body collisions between one water drop and two already formed agglomerates. Resulting agglomerates were considered as fractal-like ones. During crystallization and agglomeration, the effective volume fraction of drops and porous agglomerates is increased, and then suspension viscosity increases. When all water drops are crystallized, agglomeration stops and viscosity does not change.  相似文献   

7.
The kinetics of structure II gas hydrates, formed from pure propane and a mixture of propane and ethane, were investigated and intrinsic rate constants were regressed from the experimental data. The experiments were conducted in a semi-batch stirred tank reactor equipped with an in-situ particle size analyzer and connected to an external Raman spectrometer. Experiments were conducted with pure propane at temperatures ranging from 274 to 276 K and pressures ranging from 0.39 to 0.43 MPa. The intrinsic rate constant for ethane in structure II was subsequently regressed from experimental data on the formation of hydrates formed from an equimolar mixture of propane and ethane at 274 K and 0.35 MPa. Raman spectroscopy was used to verify that ethane was present only in the large sII cavity.  相似文献   

8.
The degree of subcooling is usually used as the driving force for hydrate formation; however, it does not encompass the effect of pressure. A comprehensive driving force for hydrate formation is a function of pressure, temperature, and gas composition; however, its calculation is not as simple as that of subcooling. In this work, by application of the two latest driving force expressions for hydrate formation, the relationships between subcooling and the true driving force at different conditions for pure gas-water and natural gas-water systems are analysed. The effect of pressure on the induction time in the presence and absence of a kinetic inhibitor have been tested at similar degrees of subcooling.The results show that for pure gas-water systems subcooling is proportional to the driving force, with a good approximation over a wide pressure range at isothermal conditions. However, for multicomponent systems (e.g., natural gases), the driving force is more than that suggested by subcooling at some pressures. Changes of driving force with pressure at a constant degree of subcooling for the above systems have been presented. The results show that the pressure has no significant effect on the driving force (at a constant degree of subcooling) above a certain pressure range. The experimental results show that in a natural gas-water system at constant degree of subcooling the induction time is not significantly affected by pressure. However, in the presence of the kinetic inhibitor tested in this study, high-pressure conditions decreased the induction time.  相似文献   

9.
Gas hydrates have recently emerged as a better alternative for the production, storage, and transportation of natural gases. However, factors like slow formation rate and limited storage capacity obstruct the pos-sible industrial application of this technique. Different types of promoters and synergists have been developed that can improve the kinetics and storage capacity of gas hydrates. This review focuses on dif-ferent kinetic promoters and synergists that can be utilized to enhance the storage capacity of hydrates. The main characteristics, structure and the possible limitations of the use of these promoters are likewise portrayed in detail. The relationship between structure and storage capacity of hydrates have also been discussed in the review. Current status of production of gas from hydrates, their restrictions, and future difficulties have additionally been addressed in the ensuing areas of the review.  相似文献   

10.
The kinetics of formation of clathrate hydrates of methane was investigated in a water-in-oil emulsion using high-pressure differential scanning calorimetry in the range 10-40 MPa, at various temperatures. At high driving force, the heat peak related to the formation of hydrates has a regular and symmetric shape, and its height and width depend on the gas pressure and sub cooling degree. At near equilibrium conditions, hydrate formation is delayed by more than 1 h, but is still clearly observable. A model based on crystal growth theory, coupled with a normal distribution of induction times to take into account the germination in a population of micro-sized droplets, is proposed to represent the hydrate formation rate versus time in the particular case of water-in-oil emulsions. It uses four parameters which appear strongly correlated to the experimental conditions: the growth rate constant, the over saturation of gas in the water phase, the average and standard deviation of the induction time distribution.  相似文献   

11.
Experimental data on the rate of decomposition of CO2 gas hydrates has been obtained using a semi-batch stirred tank reactor, with an in-situ particle size analyser, at temperatures ranging from 274 to and pressures ranging from 1.4 to . A method for calculating the moments of the particle size distribution has been presented. The experimental data was analysed using the kinetic model of Clarke and Bishnoi (Determination of the intrinsic kinetics of gas hydrate decomposition kinetics using particle size analysis, Presented at the Third International Conference on Gas Hydrates, Salt Lake City, Utah, July 18-22, 1999; Chem. Eng. Sci. 55 (2000) 4869) in its differential form in order to account for the slight change in temperature during the decomposition of CO2 hydrates. The applicability of the new instrument for measuring gas hydrate decomposition kinetics was examined by conducting experiments with ethane at conditions similar to those encountered by Clarke and Bishnoi (2000). It was seen that the previously obtained rate constants for ethane hydrate decomposition were able to predict the new obtained data. A new procedure for regressing the intrinsic rate constant and activation energy has also been described and it is seen that the activation energy is and the intrinsic rate constant is for CO2 gas hydrate decomposition.  相似文献   

12.
Low temperature and low permeability are the challenges for the development of hydrate reservoirs in perma-frost.The ice produced around the production well caused by high depressurization driving force reduces the gas production,and it is necessary to reduce the effect of ice production on gas production.In this work,a new combination of fracturing technology and depressurization method was proposed to evaluate the gas production potential at the site DK-2 in Qinghai-Tibet Plateau Permafrost.A relatively higher intrinsic permeability of the fracture zone surround the horizontal production well was created by the fracturing technology.The simulation results showed that the fracture zone reduced the blocking of production ice to production wells and promoted the propagation of production pressure.And the gas production increased by 2.1 times as the radius of the frac-ture zone increased from 0 to 4 m in 30 years.Nearly half of the hydrate reservoirs were dissociated in 30 years,and greater than 51.7%of the gas production was produced during the first 10 years.Moreover,production be-haviours were sensitive to the depressurization driving force but not to the thermal conductivity.The growth of gas production was not obvious with the intrinsic permeability of the fracture zone higher than 100 mD.The effect of ice production on gas production by fracturing technology and depressurization method was limited.  相似文献   

13.
Small, cationic tetraalkylammonium ions (particularly for alkyl=butyl or pentyl) are known to inhibit tetrahydrofuran (THF) and natural gas hydrate crystal growth and have been used as synergists for commercial kinetic hydrate inhibitor polymers (KHIs), such as N-vinylcaprolactam polymers, for a number of years. The ability for small, organic anionic molecules to inhibit (THF) hydrate crystal growth and their potential as KHI synergists in blends with poly(N-vinylcaprolactam) have been investigated. Several series of sodium alkyl carboxylates, sulphates and sulphonates were synthesised. It was found that none of these molecules were capable of inhibiting THF hydrate crystal growth as well as the best tetraalkylammonium salts. Alkyl carboxylates appeared to be more effective as inhibitors than the sulphonates or sulphates. The most effective anionic THF hydrate crystal growth inhibitors had butyl or pentyl groups, with alkyl branching at the tail (i.e. iso- rather than n-isomers) being advantageous. Anionic carboxylate molecules, particularly with isopentyl or isobutyl groups, showed some kinetic inhibition synergy with poly(N-vinylcaprolactam) lowering the onset and catastrophic hydrate formation temperatures in high pressure (78 bar) constant cooling experiments with Structure II hydrates by 1–2 °C when dosed at 2500 ppm compared with using 2500 ppm polymer alone. This synergism was however less than the best tetraalkylammonium salts (alkyl=n-butyl or n-pentyl) at the same test conditions. Sodium butyl sulphonate and sodium 4-methylpentanoate did not prevent hydrate agglomeration with 3.6% brine and decane at 25% water cut in stirred sapphire cells when dosed at 20,000 ppm based on the aqueous phase, whereas 10,000–20,000 ppm active material of several commercially available anti-agglomerants gave fine transportable slurries and no hydrate deposits at the same conditions.  相似文献   

14.
Kinetic hydrate inhibitors (KHIs) are used to prevent gas hydrate formation in gas and oilfield operations. Recently, a new KHI test method was reported in which hydrates are formed and re-melted just above the equilibrium temperature, before the fluids are re-cooled and the performance of the chemical as a KHI is determined. The method, which we have called the superheated hydrate test method, is claimed to be more reliable for KHI ranking in small equipment, giving less scattering in the hold time data due to avoiding the stochastic nature of the first hydrate formation. We have independently investigated this superheated hydrate test method in steel and sapphire autoclave tests using a gas mixture forming Structure II hydrates and a liquid hydrocarbon phase, which was necessary for satisfactory results. Our results indicate that hold times are shorter than using non-superheated hydrate test methods, but they are more reproducible with less scattering. The reduced scattering occurs in isothermal or slow ramping experiments even when the hydrates are melted at more than 10 °C above the equilibrium temperature (Teq). However, if a rapid cooling method is used, the improved reproducibility is retained when melting hydrate at 2.4 °C above Teq but lost when warming to 8.4 °C above Teq. Using the ramping test method, most, but not all the KHIs tested agreed with the same performance ranking obtained using traditional non-superheated hydrate test methods. This may be related to the variation in the dissociation temperature of gas hydrates with different KHIs and different KHI inhibition mechanisms. Results also varied between different size autoclave equipments.  相似文献   

15.
《分离科学与技术》2012,47(1):144-154
ABSTRACT

For efficient xenon (Xe) recovery from natural gas (NG), multiple gas hydrate crystallization was considered. The optimal stages’ number for effective Xe recovery from model gas mixtures with close composition to NG one was determined. Gas hydrate distribution’s coefficients are defined for these gases at each stage, and each iterations of the multiple gas hydrate crystallization. In CH4+ H2S+CO2+ Xe gas mixture that is closest to NG composition, the maximum average Xe concentration in the gas hydrate phase was observed at the second stage of the multiple gas hydrate crystallization.  相似文献   

16.
Low dosage kinetic hydrate inhibitors(KHIs) are a kind of alternative chemical additives to high dosage thermodynamic inhibitors for preventing gas hydrate formation in oil & gas production wells and transportation pipelines.In this paper,a new KHI,poly(N-vinyl caprolactam)-co-tert-butyl acrylate(PVCapco-TBA),was successfully synthesized with N-vinyl caprolactam(NVCap) and tert-butyl acrylate.The kinetic inhibition performances of PVCap-co-TBA on the formations of both structure Ⅰ methane hy...  相似文献   

17.
Hydrate additives can be used to mitigate hydrate formation conditions, promote hydrate growth rate and improve separation efficiency. CO2 + N2 and CO2 + CH4 systems with presence of sodium dodecyl sulfate (SDS) or tetrahydrofuran (THF) are studied to analyze the effect of hydrate additives on gas separation performance. The experiment results show that CO2 can be selectively enriched in the hydrate phase. SDS can speed up the hydrate growth rate by facilitating gas molecules solubilization. When SDS concentration increases, split and loss fraction increase initially and then decrease slightly, resulting in a decreased separation factor. The optimum concentration of SDS exists at the range of 100–300 ppm. As THF can be easily encaged in hydrate cavities, hydrate formation condition can be mitigated greatly with its existence. Additionally, THF can also strengthen hydrate formation. The THF effect on separation performance is related to feed gas components. CO2 occupies the small cavities of type II hydrate prior to N2. But the competitiveness of CO2 and CH4 to occupy cavities are quite fair. The variations of split fraction, loss fraction and separation factor depend on the concentration of THF added. The work in this paper has a positive role in flue gas CO2 capture and natural gas de-acidification.  相似文献   

18.
Study on the kinetics of hydrate formation in a bubble column   总被引:1,自引:0,他引:1  
Gas hydrate formation experiments were performed using methane in the presence of tetrahydrofuran (THF) in aqueous solution in a transparent bubble column in which a single pipe or a sintered plate was used to produce bubbles. The mole fraction of THF in aqueous solution was fixed at 6%. The hydrate formation kinetic behaviors on the surface of the rising bubble, the mechanical stability of hydrate shell formed on the surface of the bubble, the interactions among the bubbles with hydrate shell were observed and investigated morphologically. The rise velocities of individual bubbles with hydrate shells of different thickness and the consumption rates of methane gas were measured. A kinetic model was developed to correlate the experimentally measured gas consumption rate data. It was found that the hydrate formation rate on the surface of the moving bubble was high, but the formed hydrate shell was not very easy to be broken up. The bubbles with hydrate shells tended to agglomerate rather than merge into bigger bubble. This kind of characteristic of hydrate shell hindered the further formation of hydrate and led to the lower consumption rate of methane. The consumption rate of methane was found to increase with the decrease of temperature or increase of pressure. The increase of gas flux led to a linear increase in consumption rate of methane. It was demonstrated that the developed kinetic model could be used to correlate the consumption rate satisfyingly.  相似文献   

19.
13C NMR spectra were obtained for pure CH4, mixed CH4+THF, and mixed CH4+Neohexane hydrates in order to identify hydrate structure and cage occupancy of guest molecules. In contrast to the pure CH4 hydrates, the NMR spectra of the mixed CH4+THF hydrate verified that methane molecules could occupy only the small portion of 512 cages because the addition of THF, water-soluble guest component, to aqueous solution prevents the complete filling of methane molecules into small cages. Furthermore, from these NMR results one important conclusion can be made that methane molecules can’t be enclathrated at all in the large 51264 cages of structure II. In addition, gas uptake measurements were carried out to determine methane amount consumed during pure and mixed hydrate formation process. The moles of methane captured into pure CH4 hydrate per mole of water were found to be similar to the full occupancy value, while the moles of methane captured into the mixed CH4+THF hydrate per moles of water were much lower than the ideal value. The overall results drawn from this study can be usefully applied to storage and transportation of natural gas.  相似文献   

20.
The shear-induced crystallization behavior of isotactic polypropylene (i-PP) has been investigated by in situ optical microscope under various thermal and shear histories. A shish-kebab structure during growth was observed under a well controlled, however, weak shear field. According to our results under these weak shear and thermal history, a modified model was proposed for the growing process of melt shear-induced crystallization of i-PP. Furthermore, many physical insights were provided on several still unsettled issues such as extended chain crystals, row nuclei, and smectic ordering questions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号