首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以废白土与榴莲壳为原料制备了粘土生物炭吸附剂(spent bleaching earth biochar,SBEC)、以废白土为原料制备了粘土炭基吸附剂(spent bleaching earth,SBE)吸附废水中的Cr(VI)。用比表面积分析、SEM、XRD、FTIR对吸附剂进行了表征。考察了溶液初始pH、Cr(VI)溶液浓度、吸附剂投加量、吸附时间和吸附温度分别对吸附Cr(VI)的影响。25℃下pH为3时、SBEC 投加量为0.5g/L、Cr(VI)初始浓度为100mg/L、吸附时间120min,SBEC对Cr(VI)去除效率最高为86.1%,SBE则在pH为2去除效率最高为52.5%。SBEC、SBE对Cr(VI)的吸附过程符合准二级动力学模型,SBEC吸附过程符合Freundlich模型,SBE则与Langmuir吸附等温线模型较符合;吸附行为是自发吸热过程。经过5次吸附-脱附后,SBEC对Cr(VI)的去除率达58.8%。  相似文献   

2.
以废白土与榴莲壳为原料制备了粘土生物炭吸附剂(spent bleaching earth biochar,SBEC)、以废白土为原料制备了粘土炭基吸附剂(spent bleaching earth,SBE)吸附废水中的Cr(VI)。用比表面积分析、SEM、XRD、FTIR对吸附剂进行了表征。考察了溶液初始pH、Cr(VI)溶液浓度、吸附剂投加量、吸附时间和吸附温度分别对吸附Cr(VI)的影响。25℃下pH为3时、SBEC 投加量为0.5g/L、Cr(VI)初始浓度为100mg/L、吸附时间120min,SBEC对Cr(VI)去除效率最高为86.1%,SBE则在pH为2去除效率最高为52.5%。SBEC、SBE对Cr(VI)的吸附过程符合准二级动力学模型,SBEC吸附过程符合Freundlich模型,SBE则与Langmuir吸附等温线模型较符合;吸附行为是自发吸热过程。经过5次吸附-脱附后,SBEC对Cr(VI)的去除率达58.8%。  相似文献   

3.
Different structured activated carbons were prepared from Terminalia arjuna nuts, an agricultural waste, by chemical activation with zinc chloride for the adsorption of Cr(VI) from dilute aqueous solutions. The most important parameter in chemical activation was found to be the chemical ratio (activating agent/precursor, g/g). Carbonization temperature and time are the other two important variables, which had significant effect on the pore structure of carbon. A high surface area of was obtained at a chemical ratio of 300%, carbonization time and temperature of 1 h and 500 °C, respectively. The activated carbon developed shows substantial capability to adsorb Cr(VI) from dilute aqueous solutions. The parameters studied include pH, adsorbent dosage, contact time, and initial concentrations. The kinetic data were best fitted to the Lagergren pseudo-first-order model. The isotherm equilibrium data were well fitted by the Langmuir and Freundlich models. The maximum removal of chromium was obtained at pH 1.0 (about 99% for adsorbent dose of 2 g/l and 10 mg/l initial concentration).  相似文献   

4.
Hexavalent chromium (Cr(VI)) adsorption from aqueous solutions on magnetically modified multi-wall carbon nanotubes (M-MWCNT) and activated carbon (M-AC) was investigated. M-MWCNT and M-AC were prepared by co-precipitation method with Fe2+:Fe3+ salts as precursors. The magnetic adsorbents were characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA) and scanning electron microscope (SEM). The effects of amount of adsorbents, contact time, initial pH, temperature and the initial concentration of Cr(VI) solution were determined. The adsorption equilibrium, kinetics, thermodynamics and desorption of Cr(VI) were investigated. Equilibrium data fitted well with the Langmuir isotherm for both of the adsorbents. The theoretical adsorption capacities are 14.28 mg/g of M-MWCNT and 2.84 mg/g of M-AC. Cr(VI) adsorption kinetics was modeled with pseudo-second order model, intra-particle diffusion model and Bangham model. Thermodynamic parameters were calculated and ΔG°, ΔH° and ΔS° indicate that the adsorption of Cr(VI) onto M-MWCNT and M-AC was exothermic and spontaneous in nature. Results revealed that M-MWCNT is an easily separated effective adsorbent for Cr(VI) adsorption from aqueous solution.  相似文献   

5.
Removal of Cr (VI) from aqueous solution by newspapers   总被引:1,自引:0,他引:1  
The potential to remove Cr (VI) ions from aqueous solution using newspapers was investigated in the present study. The effects of relevant parameters such as solution pH, adsorbent concentration, and reaction temperature on Cr (VI) adsorption were examined. The adsorption of Cr (VI) ions onto newspapers was found to be highly pH-dependent and the highest uptake occurred at pH 1.0. The sorption equilibrium data were correlated to the Langmuir, Freundlich, Redlich-Peterson and Dubinin-Radushkevich equations. Five different non-linear error functions were examined and the result indicated that the Freundlich and Redlich-Peterson equations better fitted the equilibrium data than Langmuir isotherm. The maximum sorption capacity was found to be 55.06 mg/g at pH 1.0, adsorbent concentration 4 g/L and reaction temperature of 30 °C. Different thermodynamic parameters viz., changes in standard free energy (ΔG0), enthalpy (ΔH0) and entropy (ΔS0) were also evaluated and the results show that the sorption process was spontaneous and endothermic in nature. The kinetic experimental data were well fitted by the pseudo-second order, external film diffusion and diffusion models allowing the corresponding parameters to be evaluated. The sorption capacity increased with the decrease of adsorbent concentration.  相似文献   

6.
In the present study, a low-cost adsorbent is developed from the naturally and abundantly available sawdust which is biodegradable. The removal capacity of Cr(VI) from aqueous solutions and from the synthetically prepared industrial effluent of electroplating and tannery industries is obtained. The batch experiments are carried out to investigate the effect of the significant process parameters such as initial pH, change in pH during adsorption, contact time, adsorbent amount, and the initial Cr(VI) concentration. The maximum adsorption of Cr(VI) on sawdust is obtained at an initial pH value of 1. The value of pH increases with increase in contact time and initial Cr(VI) concentration. The equilibrium data for the adsorption of Cr(VI) on sawdust is tested with various adsorption isotherm models such as Langmuir, Freundlich, Redlich–Peterson, Koble–Corrigan, Tempkin, Dubinin–Radushkevich and Generalized equation. The Langmuir isotherm model is found to be the most suitable one for the Cr(VI) adsorption using sawdust and the maximum adsorption capacity obtained is 41.5 mg g−1 at a pH value of 1. The adsorption process follows the second-order kinetics and the corresponding rate constants are obtained. Desorption of Cr(VI) from sawdust using acid and base treatment exhibited a higher desorption efficiency by more than 95%. A feasible solution is proposed, for the disposal of the contaminant (acid and base solutions) containing high concentration of Cr(VI) obtained during the desorption process. The interference of other ions which are generally present in the electroplating and tannery industrial effluent streams on the Cr(VI) removal is investigated.  相似文献   

7.
The adsorption of Cr(VI) from soil onto lignin-based weakly acidic cation exchange resin (LBR) has been investigated. Lignin is a three-dimensional amorphous polymer composed of methoxylated phenylpropane units. The unique structure and chemical properties render the lignin suitable for the remediation of hexavalent chromium in the soil. Soil column leaching experiments were conducted to optimize the adsorption conditions. The effects of contact time, pH, adsorbent dosage and temperature on the adsorption of Cr(VI) onto the LBR have been investigated. Experiment data were then correlated with Freundlich and Langmuir isotherms. The Langmuir isotherm model fits the experimental data better than the Freundlich isotherm. It was found that the LBR has a high adsorption capability for Cr(VI) (3.95 mg·g-1) with a removal rate of 91.9%. Thus, LBR can serve as a good absorbent for the reduction of the concentration of Cr(VI) in soil.  相似文献   

8.
In this study, removal of chromium (VI) from aqueous solution by as-synthesized MCM-48 adsorbent was studied. Cetyltrimethylammonium bromide (CTAB) was used as a cationic template for the synthesis of MCM-48. The extent of adsorption was investigated as a function of solution pH, agitation speed, contact time, adsorbent and adsorbate concentrations, reaction temperature and supporting electrolyte (sodium chloride). Langmuir and Freundlich isotherms were used to model the adsorption equilibrium data. The adsorption of Cr (VI) is found to be maximum at pH values in the range of 1–3. The yielded maximum adsorption capacity of 153.8 mg/g at initial concentration of 800 (mg/L) is well predicted by of the Langmuir isotherm. Compared to the various adsorbents reported in the literature, the surfactant-containing material prepared in this study showed promise for practical applications.  相似文献   

9.
《分离科学与技术》2012,47(11-12):3200-3220
Abstract

Grainless stalk of corn (GLSC) was tested for removal of Cr(VI) and Cr(III) from aqueous solution at different pH, contact time, temperature, and chromium/adsorbent ratio. The results show that the optimum pH for removal of Cr(VI) is 0.84, while the optimum pH for removal of Cr(III) is 4.6. The adsorption processes of both Cr(VI) and Cr(III) onto GLSC were found to follow first-order kinetics. Values of k ads of 0.037 and 0.018 min?1 were obtained for Cr(VI) and Cr(III), respectively. The adsorption capacity of GLSC was calculated from the Langmuir isotherm as 7.1 mg g?1 at pH 0.84 for Cr(VI), and as 7.3 mg g?1 at pH 4.6 for Cr(III), at 20°C. At the optimum pH for Cr(VI) removal, Cr(VI) reduces to Cr(III). EPR spectroscopy shows the presence of Cr(V) + Cr(III)-bound-GLSC at short contact times and adsorbed Cr(III) as the final oxidation state of Cr(VI)-treated GLSC. The results indicate that, at pH ≈ 1, GLSC can completely remove Cr(VI) from aqueous solution through an adsorption-coupled reduction mechanism to yield adsorbed Cr(III) and the less toxic aqueous Cr(III), which can be further removed at pH 4.6.  相似文献   

10.
Carbon slurry, generated as a waste material in a naphtha-based ammonia plant of the Fertilizer Corporation of India, Gorakhpur, has been used as an adsorbent for the removal of Cr(VI) from aqueous solution at different experimental conditions. The removal was favoured at low pH, with maximum removal at pH 2·5. The effects of concentration and temperature have also been reported. Batch adsorption kinetics have been described by the Lagergren equation. The applicability of the Langmuir isotherm for the present system has been tested at different temperatures. Thermodynamic parameters indicate the endothermic nature of Cr(VI) adsorption on carbon slurry. Recovery of adsorbed chromium for reuse has also been reported in the present study. © 1997 SCI.  相似文献   

11.
A new adsorbent (AM-Fe-PGCP), iron(III) complex of an amino-functionalized poly(acrylamide)-grafted coconut coir pith(CP) was prepared through graft copolymerization of acrylamide onto CP (a lignocellulosic residue) in the presence of N, N′-methylenebisacrylamide as cross-linker using and potassium persulphate as an initiator, followed by loading with Fe(III) in the presence of HCl and was tested for its ability to recover chromium(VI) from water and industry effluents. The adsorbent was characterized using FTIR, SEM, XRD, TG/DTG, Surface area analyzer and potentiometric titrations. The potential of the AM-Fe-PGCP to adsorb Cr(VI) from aqueous solutions was investigated under different optimized conditions of pH, concentration of Cr(VI), contact time, and temperature. The effective pH for the removal of Cr(VI) was 4.0. Kinetic data followed a pseudo-second-order model. The equilibrium data were correlated with the Langmuir isotherm model. The equilibrium Cr(VI) sorption capacity was estimated to be 90.09 mg g-1. Quantitative removal of 27.7 mg L-1 Cr(VI) from 1.0 L of electroplating industry wastewater was achieved by 0.5 g adsorbent. The reusability of the adsorbent was demonstrated over four cycles using 0.1 M NaOH solution.  相似文献   

12.
The adsorption capabilities of multiwalled carbon nanotubes (MWCNTs) with and without the embedded carboxyl group for the removal of parts per million levels of hexavalent chromium were examined as a function of several parameters, namely contact time, pH of initial solution, initial concentration of Cr(VI), adsorbent dosage as well as temperature of solution. Adsorption isotherms have been utilized to explain the adsorption mechanism. Ion exchange, intra‐particle diffusion, and electrostatic interactions are found to be the fundamental mechanisms describing the adsorption of Cr(VI). The maximum adsorption capacities of Cr(VI) ion by raw MWCNTs and functionalized MWCNTs were found to be 84.75 and 78.13 mg · g?1, respectively, as calculated by the Langmuir adsorption isotherm model. This is with regard to the electron‐rich atoms inside the functional group which repels the negatively charged dichromate ions. Kinetic studies were performed, and the data was found in good agreement with the pseudo‐second‐order.  相似文献   

13.
The objective of this study was to investigate Artist’s Bracket (AB) fungi for the removal of Cr(VI) from aqueous solutions. The effects of pH, adsorbent dosage, temperature, contact time and initial concentration of Cr(VI) were evaluated. The optimal pH value for the removal of Cr(VI) was at pH 2. Moreover, the results showed that the adsorption of Cr(VI) decreased by increasing the initial Cr(VI) concentration and pH. The absorption of Cr(VI) on AB can be described by both Freundlich and Langmuir isotherm models. In addition, both pseudo-first-order and pseudo-second-order kinetic model well described the adsorption of Cr(VI) onto AB.  相似文献   

14.
《分离科学与技术》2012,47(13):3563-3581
Abstract

The adsorption of Cr(VI) from aqueous solution by Turkish vermiculite were investigated in terms of equilibrium, kinetics, and thermodynamics. Experimental parameters affecting the removal process such as pH of solution, adsorbent dosage, contact time, and temperature were studied. Equilibrium adsorption data were evaluated by Langmuir, Freundlich and Dubinin–Radushkevich (D–R) isotherm models. Langmuir model fitted the equilibrium data better than the Freundlich model. The monolayer adsorption capacity of Turkish vermiculite for Cr(VI) was found to be 87.7 mg/g at pH 1.5, 10 g/L adsorbent dosage and 20°C. The mean free energy of adsorption (5.9 kJ/mol) obtained from the D–R isotherm indicated that the type of sorption was essentially physical. The calculated thermodynamic parameters (ΔG o , ΔH o and ΔS o ) showed that the removal of Cr(VI) ions from aqueous solution by the vermiculite was feasible, spontaneous and exothermic at 20–50°C. Equilibrium data were also tested using the adsorption kinetic models and the results showed that the adsorption processes of Cr(VI) onto Turkish vermiculite followed well pseudo-second order kinetics.  相似文献   

15.
Mesoporous activated carbon (surface area of 608 m2/g) has achieved high efficiency in removal of cadmium, mercury and zinc ions from water solution. The proposed low-cost adsorbent was physically activated with water steam from the bamboo species Bambusa vulgaris striata. The batch studies suggested an activated carbon dose of 0.6 g/L, solution pH of 9 and an equilibrium time of 16 h in static conditions. The pseudo-second order equations represented the adsorption kinetics with high correlation. Fitting of the experimental results to the Langmuir, Freundlich, Redlich–Peterson and Toth isotherm models showed an almost homogeneous surface coverage and presence of physical adsorption. The highest adsorption capacities, calculated from the Langmuir model, are 239.45, 248.05 and 254.39 mg/g of cadmium, mercury and zinc, respectively.  相似文献   

16.
Fluoride is considered as a major inorganic pollutant present in drinking water. To remove this excess fluoride, defluoridation was done by alumina. In the present study, alumina used was acidic in nature and hence considered as a good fluoride removing adsorbent. Characterization of the adsorbent was done by XRD, SEM, BET and FTIR with BET surface area of 144.27 m2/g. Systematic adsorption experiments were carried out with different process parameters such as contact time, adsorbent mass, pH, temperature and stirring speed. Fluoride adsorption by alumina was highly pH dependent. Maximum fluoride was removed from water at pH 4.4. At very low and very high pH, fluoride removal efficiency was affected. The study of thermodynamic parameters inferred that physical adsorption was dominant with activation energy of 95.13 kJ/mol and endothermic behavior of the process. The kinetics study concluded that pseudo second order kinetics was followed by the adsorption process. Adsorption equilibrium was studied with Langmuir and Freundlich isotherm models. The adsorption process followed Langmuir isotherm with an adsorption capacity of 8.4 mg/g. A regeneration study was proposed in order to reuse the adsorbent for better economy of the process. Finally, a process design calculation was reported to know the amount of adsorbent required for efficient removal of fluoride from aqueous medium.  相似文献   

17.
Industrial use of heavy metals and dyes critically depends on the effective handling of industrial effluents. Effective remediation of industrial effluents using various adsorbent materials has thus become critical. In this paper, we study two-dimensional MXenes as an adsorbent for removing Cr(VI) and methyl orange (MO) in waters. The physico-chemical performance of MXenes was studied using X-ray diffraction, Fourier transform infrared spectroscopy, Brunauer?Emmett?Teller, scanning electron microscopy, high resolution-transmission electron microscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy techniques. The adsorption system, including influence of contact time, pH of solutions, co-ions, and desorption experiments were performed for effective Cr(VI) and MO removal. The Cr(VI) and MO removal rate of the MXenes was very fast, and the kinetic system was driven by pseudo-second-order kinetics. The sorption isotherm closely well-tailored with the Langmuir isotherm, and the maximum removal efficiencies were 104 and 94.8 mg/g for Cr(VI) and MO, respectively. The MXenes was successfully regenerated by 0.1 M NaOH aqueous solution and can be repeatedly recycled. The uptake of Cr(VI) and MO by the MXenes was mainly due to chemical adsorption, namely electrostatic adsorption, complexation, surface interactions, and ion exchange mechanisms. This investigation demonstrates the selectivity and feasibility of the MXenes as a real adsorbent for eliminating Cr(VI) and MO from the aqueous environment.  相似文献   

18.
《分离科学与技术》2012,47(10):1562-1570
An investigation was conducted with a newly developed adsorbent, iron(III)- coordinated amino-functionalized poly(glycidylmethacrylate)-grafted TiO2-densified cellulose (Fe(III)-AM-PGDC) on the removal of chromium(VI) from aqueous solution. Batch experiments were performed under various conditions of time, pH, concentration, dose, ionic strength, and temperature. Adsorption of Cr(VI) on Fe(III)-AM-PGDC was dominated by ion exchange or outer-sphere complexation. The maximum adsorption capacity was found to be 109.76 mg g?1. Thermodynamic study showed that adsorption of Cr(VI) onto Fe(III)-AM-PGDC is more favored. The complete removal of Cr(VI) from electroplating wastewater was achieved by the adsorbent. The adsorbent did not lose its adsorption capacity even after the fourth regeneration.  相似文献   

19.
In this study, bio-chars were evaluated as a potential adsorbent for the removal of Cr (VI) ions from aqueous solutions. The effects of some important parameters including initial pH (1.5–7), adsorbent dose (0.2–5 g/L), contact time (5–900 min) and initial Cr (VI) ion concentration (5–75 mg/L) were tested on the removal of Cr (VI) ions from aqueous solution in batch experiments. Maximum adsorption capacities of the tested bio-chars under the certain experimental conditions determined as optimal were 3.53 mg/g for NCBC, 3.97 mg/g for NZCBC and 6.08 mg/g for ACBC, respectively. Results of the kinetic and isotherm modeling studies revealed that the adsorption data fitted well with a pseudo-second order and Langmuir model. In among the tested bio-chars, the bio-char (ACBC) was largely equivalent to activated carbon: AC (9.97 mg/g) in terms of adsorption capacity. All results indicated that the bio-chars had higher adsorption capacity than some chars and activated carbons reported previously, and also that these bio-chars could be used successfully as low-cost adsorbents for the removal of chromium ions from aqueous solutions under the tested experimental conditions.  相似文献   

20.
The recovery of toxic metal compounds is a deep concern in all industries. Hexavalent chromium is particularly worrying because of its toxic influence on human health [1], [2] and [3]. Actually the wastewater norm (0.1 mg/l) is very strict and will become more severe in the near future. We present in this paper the experimental results of the metal ion which is bound on micellar compounds and then retained by ultrafiltration membrane. A well known surfactant cetyltrimethylammonium bromide (CTABr) is used as an adsorbent to remove hexavalent chromium from wastewaters. The effects of various experimental parameters on equilibrium adsorption of Cr(VI) on the surfactant have been investigated using batch adsorption experiments. It was found that the capacity of chromium adsorption on CTABr increases with initial metal concentration and in a lesser extent with pH solution. Total chromium adsorption decreased slightly with a rise in temperature suggesting an exothermic adsorption of chromium, thermodynamic parameters are evaluated. It has also been observed that the capacity of chromium adsorption decreases with the mass of adsorbent and concentration of other ions present in the solution. The metal ion adsorption on surfactant is well represented by the Freundlich isotherm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号