共查询到4条相似文献,搜索用时 0 毫秒
1.
介绍空心环管壳式换热器的结构特点及其在云南驰宏锌锗股份有限公司硫酸转化系统改造中的应用情况,分析生产中运行的效果。 相似文献
2.
The multi-objective optimization of industrial operations using genetic algorithm and its variants, often requires inordinately large amounts of computational (CPU) time. Any adaptation to speed up the solution procedure is, thus, desirable. An adaptation is developed in this study that is inspired from natural genetics. It is based on the concept of jumping genes (JG; transposons). The binary-coded elitist non-dominated sorting genetic algorithm (NSGA-II) is adapted, and the new code, NSGA-II-JG, is used to obtain solutions for the multi-objective optimization of an industrial fluidized-bed catalytic cracking unit (FCCU). This unit is associated with a complex model that is highly compute-intense. The CPU time required for this problem is found to reduce fivefold when NSGA-II-JG is used, as compared to when NSGA-II is used. Solutions of similar two-objective optimization problems for the FCCU are compared. NSGA-II-JG also gives improved convergence characteristics and spread of the optimal Pareto points for two simpler multi-objective optimization problems studied here. Indeed, in one problem, where several optimal Pareto fronts exist, the new code gives the correct, global optimal Pareto set, while the original code (binary-coded NSGA-II) converges to local Paretos. The JG operator is associated with some kind of macro–macro-mutation and introduces higher exploratory capabilities, counteracting the effect of elitism in NSGA-II. We, thus, have a better algorithm incorporating the advantages of elitism. This adaptation can prove to be of considerable value for solving other compute-intense problems in chemical engineering. 相似文献
3.
The nondominated sorting genetic algorithm (NSGA) has been used to optimize the operation of the continuous casting of a film of poly (methyl methacrylate). This process involves two reactors, namely, an isothermal plug flow tubular reactor (PFTR) followed by a nonisothermal film reactor. Two objective functions have been used in this study: the cross‐section average value of the monomer conversion, x̄mf , of the product is maximized, and the length, zf , of the film reactor is minimized. Simultaneously, the cross‐section average value of the number‐average molecular weight of the product is forced to have a certain prescribed (desired) value. It is also ensured that the temperature at any location in the film being produced lies below a certain value, to avoid degradation reactions. Seven decision variables are used in this study: the temperature of the isothermal PFTR, the flow rate of the initiator in the feed to the PFTR (for a specified feed flow rate of the monomer), the film thickness, the monomer conversion at the output of the PFTR, and three coefficients describing the wall temperature to be used in the film reactor. Sets of nondominating (equally good) optimal solutions (Pareto sets) have been obtained due to the conflicting requirements for the several conditions studied. It is interesting to observe that under optimal conditions, the exothermicity of the reactions drives them to completion near the center of the film, while heat conduction and higher wall temperature help to achieve this in the outer regions. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1439–1458, 2000 相似文献
4.
In the present investigation, at first, the surface of ZrO2 nanoparticles was modified with a bioactive and biocompatible diacid based on leucine amino acid as a coupling agent. The grafting of diacid on the surface of ZrO2 was confirmed by Fourier transform infrared spectroscopy and thermogravimetric analysis. Then, the synthesis of poly(amide-imide)/ZrO2 nanocomposite (PAI/ZrO2 NC) was performed through ultrasonic technique. The obtained NCs demonstrated good thermal stability. Field emission scanning electron microscopy and transmission electron microscopy analysis showed that the average diameter of NP was around 15–20 nm. Finally, the resulting NC, was used as a nano-filler and was incorporated into the poly(vinyl alcohol) (PVA) in order to improve its mechanical and thermal properties. The PVA/PAI–ZrO2 NC films were characterized by different techniques. The data indicated that the thermal and mechanical properties of the PVA/PAI–ZrO2 NC were enhanced. It was attributed to the good dispersion of filler into the PVA matrix as a result of hydrogen bonding. 相似文献