首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Biomass gasification processes are more commonly integrated to gas turbine based combined heat and power (CHP) generation systems. However, efficiency can be greatly enhanced by the use of more advanced power generation technology such as solid oxide fuel cells (SOFC). The key objective of this work is to develop systematic site-wide process integration strategies, based on detailed process simulation in Aspen Plus, in view to improve heat recovery including waste heat, energy efficiency and cleaner operation, of biomass gasification fuel cell (BGFC) systems. The BGFC system considers integration of the exhaust gas as a source of steam and unreacted fuel from the SOFC to the steam gasifier, utilising biomass volatilised gases and tars, which is separately carried out from the combustion of the remaining char of the biomass in the presence of depleted air from the SOFC. The high grade process heat is utilised into direct heating of the process streams, e.g. heating of the syngas feed to the SOFC after cooling, condensation and ultra-cleaning with the Rectisol® process, using the hot product gas from the steam gasifier and heating of air to the SOFC using exhaust gas from the char combustor. The medium to low grade process heat is extracted into excess steam and hot water generation from the BGFC site. This study presents a comprehensive comparison of energetic and emission performances between BGFC and biomass gasification combined cycle (BGCC) systems, based on a 4th generation biomass waste resource, straws. The former integrated system provides as much as twice the power, than the latter. Furthermore, the performance of the integrated BGFC system is thoroughly analysed for a range of power generations, ~100–997 kW. Increasing power generation from a BGFC system decreases its power generation efficiency (69–63%), while increasing CHP generation efficiency (80–85%).  相似文献   

2.
3.
Lignite has been extensively used for electricity generation in many regions worldwide. However, its high water content has obviously negative effect on plant thermal efficiency. Performance of lignite-fired power plant can be improved by predrying the lignite before combustion. In addition, recovery of waste heat from the dryer and the power generation system will enhance the plant thermal efficiency further. In the present study, a new lignite predrying power generation system integrated with an efficient waste heat recovery system was proposed. Both dryer exhaust waste heat and steam turbine exhaust latent heat were recovered to heat boiler feed water. Energy analysis indicates that system performance is improved significantly. The plant thermal efficiency increases linearly with drying degree and then increases at a lower rate. The generation of unused dryer exhaust changes the variation tendency of system performance with drying degree.  相似文献   

4.
Imatran Voima Oy together with Technical Research Centre of Finland has carried out experimental research on fuel drying at high pressure steam atmosphere. The pilot dryer is a pressurized flash dryer. Since its commissioning in 1991, the dryer has been used for drying experiments of peat and wood biomass for about 1000 h. The dryer operates at 23 bar pressure steam atmosphere with capacity of abt. 1000 kg/h of wet feedstock.

The developed high pressure steam dryer is planned to be used in a power plant process suitable for wet fuels as peat, biomass, and brown coal. The process is based on the connection of a pressurized fuel dryer, a pressurized gasifier, and a gas turbine. The integration of the high pressure steam dryer to the process increases the power generating efficiency of the process essentially.  相似文献   

5.
ABSTRACT

Imatran Voima Oy together with Technical Research Centre of Finland has carried out experimental research on fuel drying at high pressure steam atmosphere. The pilot dryer is a pressurized flash dryer. Since its commissioning in 1991, the dryer has been used for drying experiments of peat and wood biomass for about 1000 h. The dryer operates at 23 bar pressure steam atmosphere with capacity of abt. 1000 kg/h of wet feedstock.

The developed high pressure steam dryer is planned to be used in a power plant process suitable for wet fuels as peat, biomass, and brown coal. The process is based on the connection of a pressurized fuel dryer, a pressurized gasifier, and a gas turbine. The integration of the high pressure steam dryer to the process increases the power generating efficiency of the process essentially.  相似文献   

6.
Hydrogen production from biomass steam gasification is systematically reviewed. Equilibrium modeling and simulation studies using various techniques for effective hydrogen production are presented. Heat integration, economic analysis of the hydrogen production, and systematic design algorithms research publications are overviewed and discussed for energy-efficient and economic hydrogen production from various biomass feedstocks. Comparison and analysis of the results strongly suggest the viable potential of biomass steam gasification for hydrogen production from small to large scales with applications for thermal heat, power generation, and many other industrial fields.  相似文献   

7.
Lignite is becoming a competitive fuel for power generation with high security of supply and a low price. But a power plant firing lignite directly always has some weaknesses, including low thermal efficiency and high construction investment. Predrying lignite before feeding it to the boiler is a potential method to tackle these weaknesses, and low-pressure steam extracted from steam turbines is considered a competitive heat source for the drying process. In a lignite-fired power system integrated with a steam dryer, the steam extraction is led to the dryer via a connection pipe and depressurization valve. To obtain a stable drying temperature at a variable load of power, steam extraction is often used by the dryer after depressurization, which indeed causes exergy loss. To reduce the exergy loss, the steam extraction was proposed to be supplied to the dryer via a compressor or ejector. Thermodynamic models were developed to calculate the net efficiency of a power system with different energy supply systems. The energy saving boundary—that is, the net efficiency of power system could be increased in some ranges of drying temperature by some energy supply system of dryer—was obtained. Furthermore, the exergy efficiencies were calculated.  相似文献   

8.
Kazuhiro Kumabe 《Fuel》2008,87(7):1422-1427
We have researched and simulated the BTL (biomass to liquid process) in which woody biomass is converted to transportation liquid fuels. In the present study, methanol (MeOH) was considered as a liquid fuel. The BTL-MeOH was designed and the environmental and economic analysis of the process was performed from the viewpoint of CO2 emission and capital and operating costs. A case study focusing on heat and power resources was conducted. The result revealed that the process required an independent case of heat and power for CO2 reduction; however, the cost of this was high due to the cogeneration with a steam turbine. Therefore, the introduction of a low-cost cogeneration, e.g., with a gas turbine, was required for commercialization.  相似文献   

9.
10.
Three biomass gasification‐based hydrogen and power coproduction processes are modeled with Aspen Plus. Case 1 is the conventional biomass gasification coupled with a shift reactor, cases 2 and 3 involve integration of biomass gasification with iron‐based and calcium‐based chemical looping systems. The effects of important process parameters on the performance indicators such as hydrogen yield and efficiencies are evaluated by sensitivity analyses. These parameters include gasification temperature, molar ratios of steam to biomass in the gasifier, Fe2O3 to syngas in the fuel reactor, Fe/FeO to steam in the steam reactor, CaO to CO, and steam to CO in the carbonator. The energy and exergy balance distributions for the above three cases are comprehensively discussed and compared. Furthermore, techno‐economic assessments are performed to evaluate the three cases in terms of capital cost, operating cost, and leveled cost of energy.  相似文献   

11.
Gas‐turbine‐based cogeneration systems have been widely used in different applications in recent years. Although the most common method of using gas turbine exhaust energy is through the generation of steam in a heat recovery boiler, there are some applications where the exhaust energy has been directly used for drying or process fluid heating. In this work, direct integration of a gas turbine with a process was fully investigated in the context of pinch technology. This investigation includes simple gas turbine and gas turbines equipped with recuperator and afterburner. It was found that the best thermodynamic efficiency in a direct gas turbine system is achieved when two conditions are met: first, turbine inlet temperature is maximized, second, optimum pressure ratio is that which yields the maximum specific network. Two total cost optimization methods were also introduced. The first method is based on the assumption that power produced equates to power demand. In the second approach the power export opportunity was also considered. Finally, illustrative examples have been presented to show how approaches can be applied in practice.  相似文献   

12.
Lignite is a reliable raw energy material with abundant supply worldwide. However, the efficient use of lignite to generate power remains challenging, because lignite exhibits undesirable characteristics, including low heating value and high moisture content. Despite these disadvantages, the efficiency of lignite-fired power plants can be increased by predrying lignite. In this study, a predried lignite-fired power plant, which uses steam extracted from steam turbines as a heat source to dry lignite, was simulated using Aspen Plus. This study then analyzed the performance of the predried lignite-fired power plant at rated and partial loads on the basis of the thermodynamics principles. This study also examined the influence of lignite predrying on the exergy losses and destructions of the power plant components. Results indicate that the exergy destructed the combustion process decreases significantly because of lignite predrying, by 5.78 percentage points. The plant thermal efficiency based on the lower heating value of raw lignite relatively increases by 4.35%. The efficiency improvement of the power plant reduces as the load ratio decreases, because exergy is destructed in the admission opening, which is used to control the pressure of the steam leading to the dryer. The integration of the dryer saves energy only when the load ratio is >50%.  相似文献   

13.
陈凯锋  周芳 《水泥工程》2018,31(2):79-81
针对许多熟料生产线的剩余余热蒸汽,设计了蒸汽—电联合动力方式,通过工业汽轮机与电动机联轴运行,实施水泥厂大型转动设备的蒸汽—电联合动力。实现了以较低的成本,扩展水泥厂余热蒸汽的利用范围,降低熟料生产线的用电量。论文对比分析余热发电与蒸汽—电联合动力的效率,结果表明,蒸汽—电联合动力有更高的效费比,更低的投资与运行费用。  相似文献   

14.
In this study, an improved configuration of lignite-fueled power plant integrated with a two-stage predrying system was proposed. The predrying system mainly consists of two fluidized-bed dryers and an additional feed water heater. Lignite is dried successively in the exhaust gas dryer and steam dryer. With boiler exhaust gas being the heat source of the first stage dryer, waste heat of a fraction of the boiler exhaust gas can be used. The exhaust gas of the second stage dryer was considered to be water vapor and its latent heat can be recovered by the additional feed water heater. The thermodynamic and economic analysis show that with the lignite drying degree being 0.1, 0.2, and 0.3?kg/kg, the power generation efficiency of the proposed power plant is 1.45, 2.12, and 2.81% higher than that of the conventional lignite power plant, respectively. Moreover, the annual net economic benefit will be 1.34, 2.03, and 1.60 M$/a during the lifetime of the drying system. The annual net economic benefit is not necessarily higher with higher power generation efficiency.  相似文献   

15.
The concept of steam drying originates from the mid of the last century. However, a broad industrial acceptance of the technique has so far not taken place. The paper deals with modelling the steam drying process and applications of steam drying with in certain industrial sectors where the technique has been deemed to hove special opponunities.

In the modelling scction the mass and heat transfer proceases are described along with equilibrium, capillarity and sorption phenomena occurring in porous materials during the steam drying process. In addition existing models in the literslure are presented.

The applications discussed involve drying of fuels with high moisture contcna, cattle feed exemplified by sugar beet pulp. lumber. paper pulp. paper and sludges.

Steam drying is compared to flue gas drying of biofuels prior to combustion in a boiler. With reference to a current insrallation in Sweden. the exergy losses. as manifested by loss of co-generation cupacity. are discussed. The energy saving potentid when using steam drying of sugar beet pulp as compared to other possible plant configurations is demonstrated.

Mechanical vapour recompression applied to steam drying is analysed with reference to reponed dau from industriul plsnts. Finally. environmcntul advantages when using steam drying are presented.  相似文献   

16.
Thermochemical conversion processes of biomass to energy are increasingly demanding in terms of the quality of the raw material, especially regarding its moisture content. The use of continuous dryers is attractive because of their low cost and ease of integration into the production line. However, the design of the drier (drying chamber and heating source) and the optimization of its control based on relevant criteria are complex. This paper presents DryKiln_CRP, a comprehensive multiscale model able to account for the two-way interactions between particles, bed, and drier. The drying model at the particle level is based on the van Meel approach which was extended to account explicitly for heat and mass transfer coupling. Computational simulations are discussed for two case studies to emphasize the potential of this multiscale computational model in the design and optimization of industrial plants devoted to the pretreatment of biomass.  相似文献   

17.
A steam power plant can work as a dual purpose plant for simultaneous production of steam and elec-trical power. In this paper we seek the optimum integration of a steam power plant as a source and a site utility sys-tem as a sink of steam and power. Estimation for the cogeneration potential prior to the design of a central utility system for site utility systems is vital to the targets for site fuel demand as well as heat and power production. In this regard, a new cogeneration targeting procedure is proposed for integration of a steam power plant and a site utility consisting of a process plant. The new methodology seeks the optimal integration based on a new cogenera-tion targeting scheme. In addition, a modified site utility grand composite curve (SUGCC) diagram is proposed and compared to the original SUGCC. A gas fired steam power plant and a process site utility is considered in a case study. The applicability of the developed procedure is tested against other design methods (STAR? and Thermoflex software) through a case study. The proposed method gives comparable results, and the targeting method is used for optimal integration of steam levels. Identifying optimal conditions of steam levels for integration is important in the design of utility systems, as the selection of steam levels in a steam power plant and site utility for integration greatly influences the potential for cogeneration and energy recovery. The integration of steam levels of the steam power plant and the site utility system in the case study demonstrates the usefulness of the method for reducing the overall energy consumption for the site.  相似文献   

18.
From viewpoints of the environment and fuel cost reduction, small-scale biomass combined heat and power (CHP) plants are in demand, especially wood-waste fueled system, which are simple to operate and maintenance-free with high thermal efficiency similar to oil fired units. These are requested by wood and other industries located in mountainous region. To meet these requirements, a Stirling engine CHP system combined with simplified biomass combustion process with pulverized wood powder was developed.In an R&D project started in 2004 considering wood powder properties as a fuel, combustion performance and emissions in combustion flue gas were tested using combustion test apparatus with commercial size units. The wood powder combustion system was modified and optimized during the combustion test results, and the design of the demonstration plant combined with 55 kWe Stirling engine power unit was considered. The demonstration plant was finally completed in March of 2006, and test operation has been progressed for the future commercial CHP system.In the wood powder combustion test, wood powder of less than 500 μm is mainly used, and a combustion chamber length of 3 m is applied. In these conditions, the air ratio can be reduced to 1.1 without increasing CO emission of less than 10 ppm and combustion efficiency of 99.9%. In the same conditions, NOx emission is estimated to be less than 120 ppm (6% O2 basis). Wood powder was confirmed to have excellent properties as a fuel for Stirling engine CHP system. This paper summarizes the wood powder combustion test, and presents the evaluation of the burner design parameters for the biomass Stirling engine system.  相似文献   

19.
ABSTRACT

The concept of steam drying originates from the mid of the last century. However, a broad industrial acceptance of the technique has so far not taken place. The paper deals with modelling the steam drying process and applications of steam drying with in certain industrial sectors where the technique has been deemed to hove special opponunities.

In the modelling scction the mass and heat transfer proceases are described along with equilibrium, capillarity and sorption phenomena occurring in porous materials during the steam drying process. In addition existing models in the literslure are presented.

The applications discussed involve drying of fuels with high moisture contcna, cattle feed exemplified by sugar beet pulp. lumber. paper pulp. paper and sludges.

Steam drying is compared to flue gas drying of biofuels prior to combustion in a boiler. With reference to a current insrallation in Sweden. the exergy losses. as manifested by loss of co-generation cupacity. are discussed. The energy saving potentid when using steam drying of sugar beet pulp as compared to other possible plant configurations is demonstrated.

Mechanical vapour recompression applied to steam drying is analysed with reference to reponed dau from industriul plsnts. Finally. environmcntul advantages when using steam drying are presented.  相似文献   

20.
The practice of employing pulverised coal/biomass co-firing in power plants is gradually increasing. This is mainly because of the benefits associated in reducing the coal based CO2 and biomass based SOx and NOx emissions. However, biomass is difficult to mill due to its fibrous texture and this results in the presence of large particles of different shapes which influence the combustion characteristics. Existing computational fluid dynamics (CFD) models often ignore thermal gradients within the particles and this leads to inaccuracy in the combustion process modelling. In this paper, a CFD sub-model for the heat transfer within large particles is developed. The model is validated for the heating up, moisture release and devolatilisation of single wood particle measurements that are available in the literature. The impact of fuel particle sizes on the combustion characteristics has been investigated in terms of ignition, devolatilisation and char combustion in a co-firing case of an industrial combustion test facility. The predictions, while considering the internal thermal gradients with particle size and shape distribution, were identified to be in excellent agreement with measured data. The code was worked well when coupled with ANSYS FLUENT and with a negligible amount of extra time for the computations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号