首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
高密度高活性球形Ni(OH)_2的制备研究   总被引:6,自引:5,他引:6  
采用“受控中和水解法”进行了金属氢化物-镍电池用的高密度高比容量球形Ni(OH)2的制备研究,讨论了pH值、添加剂、加氨量等操作条件对Ni(OH)2堆积密度及电活性等性能的影响。实验结果表明:用本文论述的方法可以制得高密度高比容量球形Ni(OH)2颗粒,振实密度在2.0g/cm3以上,比表面积在15~20m2/g。添加氨水后可以改变Ni(OH)2的结晶程度,采用复合添加剂比单一添加剂更能有效地提高Ni(OH)2的活性和改善镍电极的性能。使用该Ni(OH)2作为活性物质的电极,其容量可达到260mAh/g。这种Ni(OH)2特别适合于用作金属氢化物-镍电池的正极活性材料。  相似文献   

2.
合金凝固组织对氢扩散和 MH 电极性能的影响   总被引:2,自引:1,他引:2  
用电位阶跃法和恒流充放电法研究了贮氢合金凝固组织中氢的扩散行为和合金氢化物电极放电的速度特性。研究表明,合金MlNi3.45(CoMnTi)1.55各凝固组织中氢的扩散系数Dh和其氢化物的电极性能均明显不同。随合金凝固时冷却速度增大,晶胞体积和氢扩散系数减小。雾化快凝合金粉末随颗粒尺寸由200目变化至360目(冷却速度增大)时,其Dh由3.06×10-7(cm2·s-1)减小至7.47×10-9(cm2·s-1);定向凝固组织随凝固速率R=48μm/s增大时,R=220μm/s时,其Dh则由7.03×10-9(cm2·s-1)增大至1.31×10-8(cm2·s-1)。合金电极的高倍率放电效率主要取决于氢在合金中的扩散速度和电极表面的电催化活性。定向凝固组织具有良好的放电速度特性与Ni元素在其凝固组织中富集和偏析以及晶体沿一定方向结晶生长关系密切  相似文献   

3.
镍氢氧化物研究进展   总被引:13,自引:2,他引:11  
综述了不同晶型镍氢氧化物的研究和发展概况,分析了现有电极材料存在的问题。提出合成高电子转移数(NEE)的正极活性物质以降低高密度球形β-Ni(OH)2电极的膨胀,提高镍电极和氢镍电池的整体性能。本文阐述了哈尔滨工业大学在电子转移数约为1.3的α-Ni(OH)2和更高电子转移数镍氢氧化物的合成、精细结构、稳定性和电化学行为方面的研究。与高密度β-Ni(OH)2电极相比,自制的α-Ni(OH)2电极具有良好的机械性能,较正的电极电位,较高的充电效率和较低的电极/溶液界面电荷转移阻抗。与同容量的高密度β-Ni(OH)2电极相比,使用高电子转移数的镍氢氧化物的电极还可以使活性物质中镍含量降低约30%,具有环境、经济和社会意义。  相似文献   

4.
研制成功了1/2A型金属氢化物-镍电池,外形尺寸为:(Φ16.5×28.5)mm,正负电极采用双发泡镍式骨架,正极活性物质为含Co8%球形Ni(OH)2,充分提高活性物质利用率,负极活性物质为包覆金属贮氢合金并加入2%抗粉化剂,克服因贮氢材料随充放循环次数增加而粉化导致电池寿命的降低。成品电极经疏水处理,电解液采用密度1.28KOH水溶液加入2%的LiOH及0.5%多官能团添加剂抑制自放电和电极膨胀。经上述处理的1/2A型电池,0.2C率放电950mAh,1C率放电855mAh,自放电率<25%(28天),1C率循环100次容量衰减<10%,满足用于移动电话电池组所要求的内阻低、小巧轻便之特点。  相似文献   

5.
α-Ni(OH)_2活性物质的初步探索   总被引:4,自引:0,他引:4  
MH-Ni电池的性能在很大的程度上决定于正极,本文初步研究了新型正极材料体系α-Ni(OH)2/β-NiOOH体系的性能,提出了制备在碱液中稳定的α-Ni(OH)2的必要条件。XRD测试表明材料具有水滑石结构,电极充放电实验表明其大电流放电性能优良,放电电压平台高于β-Ni(OH)2电极。  相似文献   

6.
高密度高活性球形氢氧化镍的制备与性能控制   总被引:26,自引:4,他引:26  
采用控制结晶法制备了高密度球形Ni(OH)2。研究了制备条件及产品的晶体结构与其电化学活性的关系。结果表明,要制备出高密度高活性的Ni(OH)2产品,不仅要严格控制反应和结晶的工艺条件,还要依靠专门的反应器,以便造成一个合适的流体力学条件。本实验所制备的产品具有晶粒细小、比表面积大(大于25m2·g-1)和堆积密度高(大于2.1g·cm-3)的特点。Ni(OH)2的晶体结构与其电化学活性关系密切,实验结果表明,(001)晶面和(101)晶面的X光衍射峰半高宽分别大于0.7°和0.8°的产品,具有活性物质利用率高和大倍率充放电性能好的优点。  相似文献   

7.
掺杂α-Ni(OH)_2的制备、结构和电化学性能   总被引:4,自引:2,他引:2  
探索了数种合成α-Ni(OH)2 的化学方法,用含有Al(NO3 )3 的Ni(NO3)2 溶液,同NaOH或含有Na2CO2 的NaOH溶液反应的方法制备了双氢氧化物固溶体,XRD分析证明其具有α-Ni(OH)2 的结构特征,能在强碱溶液中稳定存在,在碱性MH-Ni蓄电池中长期充放电循环后仍保持α-Ni(OH)2 晶型不变,有比β-Ni(OH)2 高的质量比容量,有较高且斜率较小的放电电压平台,适宜于作碱性蓄电池正极活性物质  相似文献   

8.
用化学方法在无水乙醇溶剂中制备出纳米级Ni(OH)2,对其进行XRD、TEM分析,证实样品是纳米级β-Ni-(OH)2,将常规用Ni(OH)2和纳米级Ni(OH)2以一定比例混合的充放电循环测试结果表明,放电容量增大,对其又进行了循环伏安、恒电位阶跃、Tafel极化曲线的测试,初步解释了作为纳米材料在电化学应用中所表现出的性质。  相似文献   

9.
高性能泡沫镍电极的研究   总被引:2,自引:0,他引:2  
研究了HPMC、CoO,ZnO含量对泡沫镍电极性能的影响。结果表明,在镍正极中加入CoO可以大幅度提高Ni-(OH)2利甲率,但电极只含CoO不能有效抑制膨胀,同时添加CoO、ZnO可以大幅度提高电极寿命。此外,少量ZnO的加入对Ni(OH)2利用率影响较小。在本论文的实领条件下,制造高性能泡沫镍电极的合适工艺为:HPMC、CoO、ZnO掺入量分别为0.5%、9%、4.5%。制尾的MH-Ni电池的容量在1300mAh以上,1C循环寿命在300次以上,0.2C放电1.2V以上时间占总的80%以上,1C放电1.2V以上时间占总的60%以上。  相似文献   

10.
MH-Ni 电池中正极材料的应用基础研究   总被引:3,自引:0,他引:3  
主要研究了含钴添加剂对Ni(OH)2活性及结构的影响。对Ni(OH)2进行X射线衍射结构分析(XRD)表明,含添加剂Ni(OH)2的晶体有序性差,含更多的晶格缺陷。由热重分析(TGA)表明,含添加剂的Ni-(OH)2晶格中含有结晶水,其电化学活性的提高与此有关。用循环伏安法对粉体Ni(OH)2电极在KOH水溶液中进行了研究,结果表明,添加剂能改善电极反应的可逆性。  相似文献   

11.
随着储能技术的飞速发展,大规模储能系统已经成为保证电力系统可靠供电的一个重要手段。介绍了储能技术的类别及其在电力系统中的作用,并阐述了其在电力系统中的应用研究现状和目前的主要示范应用实例,论述了储能技术未来发展趋势。  相似文献   

12.
特高压线路工频参数测试干扰分析是选择适合工频参数测试方法及测试结果分析的重要基础。测试了1 000 kV皖南-浙北特高压线路正序和零序参数测试期间的干扰电压信号,分析了其频谱特征;在此基础上,通过与正序参数仿真计算值的对比分析了正序参数实际测试偏差。结果表明:皖南-浙北特高压同塔双回线路工频参数测试期间,干扰电压存在“三相不平衡性及时变性”的特点;工频法和异频法2种不同方法得到的线路参数测试结果存在一定差异;干扰电压“时变”时,线路工频参数测试宜采用异频法。  相似文献   

13.
正Qingdao,China7.16-19,2015The International Conference on Electronic MeasurementInstruments(ICEMI)is the world’s premier conference dedicated to the electronic measurement and test of devices,boards and systems that is covering the complete cycle from design,verification,test,diagnosis,failure analysis and process of manufactory and products  相似文献   

14.
正Qingdao,China7.16-19,2015The International Conference on Electronic MeasurementInstruments(ICEMI)is the world's premier conference dedicated to the electronic measurement and test of devices,boards and systems that is covering the complete cycle from design,verification,test,diagnosis,failure analysis and process of manufactory and products  相似文献   

15.
某300 MW机组投产以来循环水流量不足,极大地影响了机组的经济性。通过试验诊断分析得到,循环水系统设计阻力小于实际值,导致按照设计阻力选型的循环水泵出力不足,使得循环水流量偏小,影响了机组运行的真空。根据循环水系统实际阻力特性,对循环水泵进行重新选型整体改造,取得了较好的效果,与改造前相比,供电煤耗降低1.174 ~1.200 g/(kW·h)。据此,提出了循环水泵在设计选型时的注意事项。  相似文献   

16.
综合考虑锂离子电池的安全性能检测要求和重点项目,以红外热像技术检测多次循环后的电池在过充过程中的温升,利用电池程控测试仪检测电池的电学信息,建立"热电"综合评价体系,并在3 C过充电条件下,将50℃的温度极值和5.0 V的电压极值确定为量化指标,对电池体系的安全性能进行评价。该评价系统具有快速、灵敏和全场性的优点。  相似文献   

17.
电站锅炉停用保护剂多采用十八胺和表面活性胺。对这2种停用保护剂进行了应用效果对比研究,即对湿冷机组、空冷机组采用十八胺或表面活性胺、有无凝结水精处理系统等6台机组停机和启动过程中给水、主蒸汽和凝结水的氢电导率变化情况进行分析。研究结果表明:在停机过程和启动过程,2种保护剂均会在水汽系统中发生部分分解,导致水汽系统的氢电导率显著升高;表面活性胺和十八胺比较,使用前者,机组启停机过程可保持凝结水精处理系统正常投运,因而可使水汽质量迅速达标,对机组安全运行有利,因此推荐采用表面活性胺作为锅炉停用保护剂。  相似文献   

18.
Abstract

Smart materials of lead-zirconate-titanate (PZT) piezoelectric ceramics have attracted attention in recent years for active vibration control, acoustic noise suppression, health monitoring and damage assessment. We at McDonnell Douglas Aerospace have been studying these ceramics for use as sensors and actuators in various space and aircraft structures. In this paper, we will report results of a recent study on active vibration control using monomorph PZT actuators. The experiments were performed on thin aluminum cantilever beams. Collocated and non-collocated sensors and actuators were employed. Two control techniques: the classical velocity feedback and adaptive feedback controls, were investigated. We have obtained significant damping and broadband vibration attenuation of greater than 30 dB using the classical control with the single-input single-output feedback approach. A 24 dB reduction has also been achieved using the adaptive control with the multiple-input single-output approach. Detailed experimental methods and results will be described.  相似文献   

19.
20.
全面、客观地对核一级锻件质量状况给予综合性评判,建立一套适用于锻件质量评价的方法体系很有必要。根据影响核一级锻件质量的制造工艺和成品质量检验,分析了影响锻件质量的主要工艺参数,建立了锻件质量评价的指标体系。在此基础上,探究了基于熵权的逼近理想解排序(TOPSIS)法的特点,建立了相应的评价模型,并将该模型应用于核电站反应堆堆芯筒体锻件的质量评价,获得了堆芯筒体质量状况的优劣排序。研究结果表明:TOPSIS法可有效、科学、客观地评价核一级锻件质量状况,且便于操作、易于推广使用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号