首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
报道了一款采用两级拓扑结构的2~4 GHz宽带高功率单片微波功率放大器芯片.放大器采用了微带结构,并使用电抗匹配进行设计,重点在于宽带功率效率平坦化设计.经匹配优化后放大器在2~4 GHz整个频带内脉冲输出功率大于35 W,小信号增益达到22 dB,在2.4 GHz频点处峰值输出功率达到40 W,对应的功率附加效率为3...  相似文献   

2.
提出了一种毫米波Doherty放大器一体化匹配网络的设计方法。该匹配网络将功率合成、阻抗变换和相位调节功能一体化,结合兰格耦合器,去除了传统Doherty功放结构中输出和输入四分之一波长线。采用0.15μm GaN工艺研制了一款Doherty放大器MMIC。连续波测试条件下,此放大器在38~42 GHz频段内,饱和功率达到40 dBm,饱和PAE大于24%,6 dB输出功率回退PAE达到16%。在中心频率40 GHz、20 MHz双音间隔测试条件下,输出功率回退3 dB时,放大器的三阶交调失真IMD3小于-21 dBc。  相似文献   

3.
采用0.25μm AlGaAs/InGaAs/GaAs PHEMT工艺技术,研制出了6~18GHz三级MMIC全匹配宽带功率放大器单片.在6~18GHz的工作频率下,放大器的平均功率增益为19dB,输出功率大于33.3dBm,在10GHz处有最大输出功率34.7dBm,输入回波损耗S11低于-10dB,输出回波损耗S22低于-6dB.与报道的C-X-Ku频段宽带功率放大器相比,有较好的功率平坦度.  相似文献   

4.
采用0.25μm AlGaAs/InGaAs/GaAs PHEMT工艺技术,研制出了6~18GHz三级MMIC全匹配宽带功率放大器单片.在6~18GHz的工作频率下,放大器的平均功率增益为19dB,输出功率大于33.3dBm,在10GHz处有最大输出功率34.7dBm,输入回波损耗S11低于-10dB,输出回波损耗S22低于-6dB.与报道的C-X-Ku频段宽带功率放大器相比,有较好的功率平坦度.  相似文献   

5.
针对GaN HEMT的自身特性,采用电抗匹配放大器结构,基于ADS谐波平衡仿真软件,设计了一个1~2 GHz宽带功率放大器.设计采用Cree公司提供的CGH400系列GaNHEMT大信号模型,并用混合集成电路工艺实现了功率放大器.测试结果显示,功率放大器在1~2 GHz频带内,饱和输出功率大于40.2 dBm,小信号增益大于14 dB,最大PAE大于70%.  相似文献   

6.
Ku波段宽带氮化镓功率放大器MMIC   总被引:1,自引:0,他引:1       下载免费PDF全文
余旭明  洪伟  王维波  张斌 《电子学报》2015,43(9):1859-1863
基于0.25μm栅长GaN HEMT工艺,采用三级放大拓扑结构设计了一款Ku波段GaN功率放大器.放大器设计从建立大信号模型出发,输出匹配网络和级间匹配网络均采用电抗匹配减小电路的损耗,从而提高整体放大器的功率效率.测试结果表明,该放大器在14.6~18GHz频带内,小信号增益30dB,脉冲饱和输出功率达15W,功率附加效率(PAE)大于32%;在14.8GHz频点处,放大器的峰值功率达19.5W,PAE达39%.该结果表明GaN MMIC具有高频高功率高效率的优势,具有广阔的应用前景.  相似文献   

7.
基于0.25μm Ga N HEMT工艺,研制了一款两级拓扑放大结构的2~8 GHz宽带功率放大器MMIC(单片微波集成电路)。MMIC所用Ga N HEMT器件结构经过优化,提高了放大器的可靠性和性能;电路采用多极点电抗匹配网络,扩展了放大器的带宽,减小了电路的损耗。测试结果表明,在2~8 GHz测试频带内,在脉冲偏压28 V(脉宽1 ms,占空比30%)时,峰值输出功率大于30 W,功率附加效率大于25%,小信号增益大于24 d B,输入电压驻波比在2.8以下,在6 GHz处的峰值输出功率达到50 W,功率附加效率达到40%;在稳态偏压28 V时,连续波饱和输出功率大于20 W,功率附加效率大于20%。尺寸为4.0 mm×5.0 mm。  相似文献   

8.
南京电子器件研究所在 2 0 0 1年研制出 WFD0 0 1 2型 2~ 6GHz功率单片放大器 ,该宽带大功率单片集成放大器的研制采用了南京电子器件研究所 76mm 0 .5μm HFET标准工艺以及 Ta N电阻、Ta2 O2电容、Si N电容等无源元件。电路设计采用无耗电抗匹配实现宽带功率匹配 ,采用有耗匹配实现良好的输入驻波比。芯片外形尺寸为 2 .9mm× 2 .9mm× 0 .0 8mm。该器件主要的性能指标为 :在 2~ 6GHz带内 ,输出功率大于 33d Bm,功率增益大于 1 3d B,功率附加效率典型值为 2 7%2~6GHz功率单片放大器…  相似文献   

9.
系列微波宽带放大器   总被引:1,自引:1,他引:0  
介绍了反馈式放大器、平衡式放大器及行波式放大器等宽带放大器的工作原理,采用多种宽带电路结构设计制作了系列微波宽带放大器,进行了微波仿真,给出了设计过程及测试结果.频率覆盖2~18 GHz,分为2~8 GHz,4~8 GHz,8~12 GHz,12~18 GHz,6~18 GHz和2~18 GHz 6个品种,增益为10~30 dB,增益平坦度小于2 dB,输入输出驻波比小于2.5,1 dB压缩输出功率可达16 dBm.由于采用模块化设计,技术指标可以灵活调整,满足不同需要.该系列微波宽带放大器采用PHEMT管芯,微波薄膜工艺,封装在密封的金属盒体中,具有系列化、模块化和小型化的特点.  相似文献   

10.
针对太赫兹波段固态大功率应用需求,基于氮化镓功率放大器单片集成电路(Monolithic Microwave Integrated Circuit,MMIC),采用功率合成技术实现了太赫兹波段瓦级功率输出。通过太赫兹波段微带/波导转换结构和键合金丝补偿技术,结合E面T型结二路合成功率分配/合成器,将两片MMIC封装成最大输出功率为160 mW的功率单元模块。在此基础上,采用八路E面合成器设计了频率覆盖180~238 GHz的十六路功率合成放大器。在漏极电压为+10 V时,带内输出功率大于300 mW,189 GHz输出功率达到了1.03 W。  相似文献   

11.
采用GaAs工艺设计了一个12~18 GHz毫米波单片集成电路(MMIC)低噪声放大器(LNA)。采用三级单电源供电放大结构,运用最小噪声匹配设计、共轭匹配技术和负反馈结构,同时满足了噪声系数、增益平坦度和输出功率等要求。仿真表明:在12~18 GHz的工作频带内,噪声系数为1.15~1.41 dB,增益为27.9~29.1 dB,输出1 dB压缩点达到15 dBm,输入、输出电压驻波比(VSWR)系数小于1.72。  相似文献   

12.
研制了一款毫米波(26~40 GHz)平衡式单片放大器芯片。放大器基于0. 15μm GaAs pHEMT工艺,实现了毫米波全频段(26~40 GHz)增益放大。采用Lange桥平衡结构,使放大器较于单边放大器有更好的输入输出驻波比,更大的1 dB增益压缩输出功率。设计时结合pHEM T晶体管小信号和大信号模型,采用自偏和RLC并联负反馈结构,在减小芯片面积的同时提高了电路的稳定性。放大器芯片尺寸仅1. 6 mm×1. 6 mm,在工作频率26~40 GHz内,测试结果表明:输入、输出驻波比小于1. 5,增益在11 dB附近,平坦度在±0. 5 dB,1 dB增益压缩输出功率大于11 dBm。测试结果验证了设计的正确性。  相似文献   

13.
设计了一款用于无线通信W-CDMA,工作在2.04~2.24GHz的脉冲功率放大器。采用微波仿真软件ADS对放大器的输入/输出阻抗匹配电路、偏置电路及其整体功放电路进行了仿真和优化。测试结果表明,在2.14GHz处的三阶交调值为32.14dBc,小信号增益为18dB,饱和输出功率为44dBm,功率附加效率达到55%。在2.04~2.14GHz频率范围的增益平坦度小于1dB。测试结果和仿真结果相近。  相似文献   

14.
双频段低噪声放大器的设计   总被引:1,自引:1,他引:0       下载免费PDF全文
适应多标准移动通信终端的迅速发展,设计了能够在800 MHz和1.8 GHz两个不同频段独立工作的低噪声放大器.放大器使用噪声性能优良的SiGeHBT管子,采用Cascode结构减小Miller电容的影响,发射极串联电感消除放大器输入端噪声系数和功率匹配的耦合,输入匹配电路采用单通道串并联LC电路,计算串并联电感和电容值,可以在两个工作频点发生谐振.输出端通过调整负载阻抗到50Ω,采用简单的电路实现功率输出.ADS的仿真结果表明,本文设计的低噪声放大器在800MHz和1.8 GHz两个工作频段的S21分别达到了24.3 dB和21.3 dB,S11均达到了-13 dB,S22均在-27dB以下,两个频段的噪声系数分别为3.3 dB和2.0 dB.  相似文献   

15.
本文研制了一款采用 0. 15 μm 碳化硅基氮化镓功率 MMIC 工艺的 Ka 波段连续波功率放大器芯片。功率放大器采用了 3 级共源级联结构。 输出级采用了 16 个晶体管进行功率合成,有效地分散了热分布,输出匹配网络采用低损耗拓扑架构,保证了输出功率与附加效率。 级间匹配采用了最大增益匹配,同时兼顾了小信号增益平坦度。 在28 GHz~30 GHz内,小信号增益为 25 dB,28 V 偏置电压下连续波输出功率大于 39 dBm,功率增益为 17 dB,附加效率大于 25%,热阻为1. 41 ℃ /W。 输出功率为 35 dBm 时,IMD3 小于-25 dBc,芯片面积为 3. 0 mm×3. 1 mm。  相似文献   

16.
采用0.15μm栅长GaN高电子迁移率晶体管(HEMT)工艺,研制了一款Ka波段大功率、高效率功率放大器单片微波集成电路(MMIC)。电路采用三级放大结构,在输入、输出端采用Lange耦合器进行功率分配和合成,输入匹配网络加入RC稳定结构以提升电路稳定性,末级器件采用改进型电抗式Bus-bar总线合成匹配网络,在保证各路平衡性的同时,调整器件电压和电流波形,提高电路的输出功率和功率附加效率。测试结果表明,在34~36 GHz频带内,放大器MMIC的饱和输出功率达到40 W,功率增益达到18 dB,功率附加效率达到30%。该功率放大器可有效改善毫米波发射系统的信号传输距离和作用精度。  相似文献   

17.
主要研究第三代半导体AlGaN/GaN功率管内匹配问题.采用8个2.5 mm GaN功率芯片设计、合成以及内匹配电路的测试,在漏极电压40 V,脉冲占空比10%,脉宽100μs的条件下进行功率匹配,实现了GaN功率HEMT在X波段8 GHz 140 W功率输出的内匹配电路,并使整个电路的输入、输出电路阻抗提升至50 Ω...  相似文献   

18.
采用0.15μm GaAs pHEMT工艺,研制了单级和两级两种结构的微波毫米波单片分布式放大器.在设计中采用电阻-电容结构代替传统分布式放大器中的终端电阻以降低直流功耗,在输入端加入短路线增强静电保护.根据应用需求设计了相应的放大器电路结构,实现了两种分布式放大器,比较了这两种结构在增益与功率容限方面的特点.第1种分布式放大器采用单级四管结构,在10~40GHz频段内,增益为(9.4±1.1)dB,1dB压缩点最大输出功率为21.5dBm;第2种分布式放大器采用两级双管级联结构,在15~40GHz频段内,增益为(12.2±1.4)dB,1dB压缩点最大输出功率为17dBm.  相似文献   

19.
研制了一款Ku波段GaN收发多功能芯片。芯片集成了接收通道的低噪声放大器和发射通道的功率放大器,使用单刀双掷开关实现通道间切换。该芯片采用两种不同栅长集成的GaN HEMT工艺。低噪声放大器使用0.10μm低压低噪声工艺,功率放大器和开关使用0.15μm高压高功率工艺。低噪声放大器采用电流复用结构以降低功耗,功率放大器采用三级电抗式匹配网络以提高芯片输出功率。测试结果表明,在14~18 GHz频带内,发射通道线性增益≥30 dB,饱和输出功率≥40.5 dBm,功率附加效率典型值为23%;接收通道线性增益为24 dB(±0.2 dB),噪声系数典型值为2.3 dB,功耗仅为140 mW(5 V/28 mA)。芯片面积为4.0 mm×3.0 mm。  相似文献   

20.
报道了研制的1mm栅宽的AlGaN/GaN HEMT内匹配微波功率管,在32V漏偏压下在7.5~9.5GHz频率范围内输出功率大于5W,功率附加效率典型值为30%,功率增益大于6dB,带内增益平坦度为±0.4dB,带内最大输出功率为6W。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号