首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
水平井筒气液两相分散泡状流流动模型   总被引:3,自引:3,他引:0  
通过对分散泡状流流型中的分散气泡进行受力分析,考虑了管壁入流或出流的影响,得到水平井筒气液两相变质量流动分散泡状流向间歇流流型转变的判别方法。并分别应用气、液两相质量守恒方程和动量守恒方程,考虑管壁存在入流或出流对于分散泡状流流型压降的影响,得到水平井筒气液两相变质量流动分散泡状流流型的压降计算方法。  相似文献   

2.
文章以奥齐思泽斯基流型分类公式为基础,对我国气举井中的气液两相流流型进行了较为全面的分析计算。由计算结果可以看出,目前气举井中只存在2种流型,即泡状流和段塞流.且段塞流普遍发生在注气点以上.因此,从应用角度来说.可以不考虑过渡流和雾状流2种流动型态.应主要加强对泡状流和段塞流的研究。  相似文献   

3.
基于井筒环空气液两相流流型的分类及特点,建立适合于直井、斜井的井筒环空段塞流、环状流水动力学模型及环空流型过渡准则。基于井筒环空多相流特性,以液膜区域为控制单元,考虑油管膜、套管膜双层液膜的存在及气芯中液滴对质量、动量传递的影响,推导了环空段塞流、环状流质量、动量守恒方程,得到了段塞流与分散泡状流、泡状流及环状流间的流型过渡准则。根据已发表文献中的实验条件,采用本文模型与校正后的圆管模型预测了不同气、液相表观速度下的流型、持液率及压力梯度。结果表明:采用本文模型可以比较准确地预测环空流型、持液率及压降梯度,且预测持液率、压力梯度的准确性优于校正后的圆管模型。  相似文献   

4.
井筒积液的产生对气井稳产有着较大的不利影响,而现有的井筒积液诊断方法又存在着应用局限性。为了明确产液量较大时气井井筒中两相流的携液机理、准确诊断井筒积液存在情况、合理制订气井生产措施,在前期研究的基础上,基于能量守恒定律,建立了气液两相垂管流的携液工况诊断新模型,通过与现场实践统计、室内实验数据进行比较,对新模型的准确性进行了验证,并采用新模型对某产液气井的携液工况进行了分析。研究结果表明:①产液量较少时,新模型计算得到的临界携液气量明显低于Turner模型的计算结果 ;②随着产液量增大,采用新模型计算得到的临界携液气量逐渐增大,并且压力越高,临界携液气量增大越明显;③气液两相垂管流的流型可分为气泡流、段塞流、过渡流、波浪流和环雾流5种,当两相流型为过渡流、波浪流或环雾流时,井筒中不存在积液。结论认为,新模型计算结果与现场实践统计、室内实验结果基本一致,诊断结论符合实际,具有普适性,可以为产液气井的携液工况诊断和积液预防提供理论支撑。  相似文献   

5.
沿程摩阻因数是制约多相管流发展的关键,摩阻因数是压降计算的重要内容之一,其计算的准确性直接决定了压降计算的准确性。基于Xiao等人的流型判别法,将流型分为分层流、段塞流、环状流和分散泡状流等4种流型。分散泡状流仅需用到气体或液体与管壁之间的相互作用;分层流、环状流和段塞流不仅用到气体或液体与管壁之间的相互作用,还要用到气液界面之间的相互作用。气体或液体与管壁之间的沿程摩阻因数可以采用单相流体的沿程摩阻因数方法计算。对于不同的流型,气液界面的摩阻因数计算方法也不同。  相似文献   

6.
页岩气水平井井筒流动规律复杂,常规井筒压降模型适应性各不相同。为了提高水平井井筒压力和流态分布预测准确度,通过国内外大量实验数据优化了井筒压降模型的流型转换界限,并在泡状流、段塞流条件下使用M-B模型持液率和无滑脱摩阻系数,环雾流条件下使用B-B模型持液率和滑脱摩阻系数,分层流条件下考虑液滴夹带的持液率和滑脱摩阻系数,建立了页岩气水平井生产压降计算新模型。通过与15口井实测压力分布数据对比,结果表明新模型在小水量大气量下的误差为4.03%,相比于B-B模型降低了6.05%;大水量下的误差为5.96%,相比于M-B模型降低了13.12%;平均相对误差为4.34%,相比于M-B模型降低了31.65%,相比于B-B模型降低了73.14%,新模型准确度更高,适用范围更广。采用新模型对N209H15-2页岩气水平井井筒压力与流态进行了实例应用,计算得到的压力分布与测压数据吻合度很高,并且可得到该井不同气水比下包含分层流的井筒流态变化特征。可见新模型扩展了对页岩气水平井井筒流动规律的认识,为排水采气工艺措施的制定提供了理论支撑。  相似文献   

7.
沿程摩阻因数是制约多相管流发展的关键,摩阻因数是压降计算的重要内容之一,其计算的准确性直接决定了压降计算的准确性.基于Xiao等人的流型判别法,将流型分为分层流、段塞流、环状流和分散泡状流等4种流型.分散泡状流仅需用到气体或液体与管壁之间的相互作用;分层流、环状流和段塞流不仅用到气体或液体与管壁之间的相互作用,还要用到气液界面之间的相互作用.气体或液体与管壁之间的沿程摩阻因数可以采用单相流体的沿程摩阻因数方法计算.对于不同的流型,气液界面的摩阻因数计算方法也不同.  相似文献   

8.
水平井筒气液两相变质量流动流型转变的研究   总被引:8,自引:0,他引:8  
井筒中的流动是管壁存在入流或出流的变质量流动。给定井筒气液流动条件,在应用机械模型预测我们感兴趣的参数之前,我们需要识别井筒中出现的流型。由于水平井筒和常规水平管中气液两相流动的相似和差别,可以预知常规水平管流的流型转换标准对于井筒流动来说就需要进行修正或扩展。根据波的迅速成长机理,在Taitel和Dukler的研究基础上,得到水平井筒分层流向非分层流流型转变的判别方法;通过对分散气泡进行受力分析,得到水平井筒分散泡状流向间歇流流型转变的判别方法;基于Barner和Brauner的研究给出水平井筒环空雾状流向间歇流流型转变的判别方法。从而得到一种判别水平井筒气液两相变质量流动4种基本流型的新方法。  相似文献   

9.
根据水平井筒和常规水平管道中气液两相流动的相似和差别,可知常规水平管流的流型转换标准用于井筒流动需要进行修正或扩展。根据气液两相界面波的迅速成长机理,考虑了管壁存在入流或出流对于分层流向非分层流流型转变的影响,在Taitel Dukler的研究基础上,得到水平井筒气液两相变质量流动分层流向非分层流流型转变的判别方法。通过对分散泡状流流型中的分散气泡进行受力分析,考虑了管壁入流或出流的影响,得到判别水平井筒气液两相变质量流动分散流向间歇流流型转变的一种新方法。  相似文献   

10.
气液两相环雾流是气井生产中最常见的流型之一,正确预测其井筒压降是气井节点系统分析、生产动态预测的重要基础。从环雾流气芯-液膜分相流结构出发,建立了环雾流压力梯度方程;其中持液率计算综合考虑了液膜及液滴的影响,通过引入Henstock & Hanratty无因次液膜厚度关系式,导出了液膜厚度计算显式方程,基于液滴沉降与液膜雾化的动态平衡,导出了适用于气井低液相雷诺数条件的液滴夹带率关系式;摩阻计算考虑了液膜与管壁的剪切应力,最终采用龙格库塔法迭代求解井筒压力。利用国内外91井次气井测压数据评价表明,新模型提高了凝析气井和产水气井井筒环雾流压降预测准确度,优于传统的均匀流模型和分相流模型,而且能够获得液滴夹带率、液膜厚度等特性参数,为油气田开发提供技术理论支持。  相似文献   

11.
为了研究套管放气油井环空多相流的流动形式,以泰勒气泡在粘滞流体中的上升流速作为主要依据,建立不同原油粘度下套管环空放气流动的截面含气体积分数计算模型和压降计算模型。模型适用于泡状流和段塞流,不适用于过渡流、环空流和雾状流。据计算模型编制了套管放气井环空流动计算软件,用该计算软件计算输出环空压力分布,将计算得到的参考点压力与实测的参考点压力对比40井次。结果表明,建立的计算模型正确、可靠,可为套管环空放气工艺提供多相流计算手段,也可为套管环空压降计算、压力估算和沉没度估算提供依据。  相似文献   

12.
气井积液是产水气藏开发设计和气井生产管理面临的重要问题,但目前对气井流动机理与携液预测还存在争议。从气液两相流的基本流动机理出发,建立了考虑液滴变形和井斜影响下气井井筒的流型、温度、压力与携液综合预测模型,并用实际井数据对模型进行了验证。结果表明,所建模型可用于直井、斜井和水平井的产水气井井筒温度压力预测,预测误差小于5%;在环雾状流动情况下,井筒内液体以液滴和液膜的形式被完全带出井口,不会出现井筒积液;对常规垂直气井,利用井口数据便能判断气井积液情况,Turner模型计算气井携液临界值较实际值偏大,李闽模型计算结果明显偏小,建议采用彭朝阳模型计算气井携液临界值;对斜井和水平井,则需要同时考虑液滴变形和井斜的影响,水平井近水平段携液临界流速和流量明显较垂直井段小,而造斜井段携液临界流速和临界流量随井斜角的增大先增大后减小,在井斜角为30°~60°之间达到最大值,因此造斜井段是气井积液判断的重点部位。  相似文献   

13.
气液两相流确定性混沌分析   总被引:1,自引:0,他引:1  
采用确定性混沌理论研究了空气 水两相流压力和压差信号的重构相空间、吸引子不变量的规律。结果表明 ,气液两相流是 1个低维混沌动力学系统 ,各流型间的非线性动力学特性不同。气液两相流的吸引子不变量 ,如Hurst指数、关联维数和Kolmogorov熵等都与流型关系密切。在多数流型内参数波动具有持久性特征 ,首次发现了高气速环状流区的反持久特征。  相似文献   

14.
在干空气钻井过程中出现地层产出液处理困难和井下不正常等现象时,常需将干空气钻井转交成空气-雾化钻井。雾化液是由表面活性剂、高分子量聚合物、井壁稳定剂等处理剂组成的。雾化液功能包括充分乳化地层产出液,促使并保持环空呈雾化稳态流,分离油永滴和钻屑团,增强空气流携屑、携水能力;抑制页岩水化并在井壁形成液膜,减小空气冲蚀作用,减小井壁摩阻。雾化液中表面活性剂的性能和浓度,及其它处理剂的水化溶解程度都会影响空气-雾化液性能。地层出液量监测对保障空气-雾化钻井顺利进行起着十分重要的指导作用。  相似文献   

15.
Formation water invasion is the most troublesome problem associated with air drilling. However, it is not economical to apply mist drilling when only a small amount of water flows into wellbore from formation during air drilling. Formation water could be circulated out of the wellbore through increasing the gas injection rate. In this paper,the Angel model was modified by introducing Nikurade friction factor for the flow in coarse open holes and translating formation water rate into equivalent penetration rate. Thus the distribution of annular pressure and the relationship between minimum air injection rate and formation water rate were obtained. Real data verification indicated that the modified model is more accurate than the Angel model and can provide useful information for air drilling.  相似文献   

16.
低渗裂缝型气藏斜井压裂技术研究   总被引:5,自引:0,他引:5  
中原油田户部寨气田是一个低渗致密裂缝型砂岩气藏,生产井多为斜井,投产需要进行压裂改造,前期效果不理想的原因是气藏的天然裂缝和斜井压裂中产生的人工多裂缝的双重作用会造成支撑缝长、裂缝宽度和导流能力降低,易使支撑剂过早发生桥塞,产生砂堵,从而影响压裂效果。以往压裂施工中为消除多裂缝的影响采取的主要措施是前置液加入大量的粉砂,但对裂缝导流能力有不利影响,使得压裂效果较差。为此,分析了斜井压裂多裂缝产生的原因,集成应用避射、射孔优化、支撑剂段塞、变排量、变黏度施工等技术,有效地降低了大斜度井压裂所产生的弯曲摩阻,控制了裂缝条数,同时又实现了大斜度井压裂不加粉砂和环空注入方式的突破,简化了压后作业程序,并以部1-14井大斜度定向井压裂施工为例进行了压裂效果分析,取得了好的成果。  相似文献   

17.
井筒积液是气井生产过程中常见的现象,特别对于页岩气、致密气等低渗透性气井,积液产生一定的背压会使得气井产量进一步降低,严重情况下会导致气井停产。准确预测气井积液临界气相流速可以指导生产者及时采取积液防治措施。斜井中液膜在重力作用下不均匀分布,使得其内部的积液研究较为复杂。通过对比已有的实验和理论研究,分析认为液膜的反向流动是积液的主要原因,并且起始于井筒横截面底部最厚处的液膜;通过分析斜井井筒中液膜速度分布规律,确定以液膜与井壁剪切应力为0作为积液判定条件。基于环雾流型并考虑斜井井筒中液膜周向不均匀分布、气芯液滴夹带的影响,建立适用于不同管径、不同液相流量的全倾角气井积液预测新模型。利用井斜角为0°~88°的实验数据、直井和斜井的现场生产数据对新模型及已有的6种积液预测模型进行分析验证的结果显示,基于零液壁剪切应力的新模型相比于其他模型更能准确地预测全倾角气井积液临界气相流速。  相似文献   

18.
为了确定苏桥储气库有水气井井下节流技术适宜的生产气水比条件,在930 m模拟实验井上,开展了空气—水两相嘴流实验。利用油嘴流型观察窗和实时采集的实验数据,分流态对嘴流现象及特点进行了观察和分析。研究结果表明:由于液体段塞流过孔眼所需生产差压远大于气体,段塞流条件下液体在嘴前回落严重,油嘴前后压力、产气量、产水量波动幅度大,嘴流稳定性差;环雾流条件下4参数波动幅度小,嘴流稳定性好。确定了苏桥储气库有水气井段塞流向环雾流转化的气水比条件为1 800~2 000 m3/m3。嘴流稳定关系到举升管的正常排液,因此有水气井井下节流技术适宜的生产条件为环雾流;对于大液量气井,井筒为段塞流时嘴径不宜太小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号