首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to determine the effect of accidental dentin primer contact with etched enamel on shear bond strength of composite resin to enamel. Four dentin bonding systems were included in this study: GLUMA Dentin Bond, Scotchbond, and Prisma Universal Bond 2 and 3. Eighty extracted human permanent anterior teeth were used and divided in eight test groups. The vestibular surfaces were ground and acid etched. For each dentin bonding system 10 samples were treated with dentin primer prior to placement of resin. Shear bond testing showed that enamel contact with dentin primer in the above two systems decreased the shear bond strength between composite and enamel by 31 to 44%.  相似文献   

2.
OBJECTIVES: This study was conducted 1) to characterize through SEM analysis the resin-dentin interface produced by single-bottle primer/adhesives and a three-component system [Scotchbond Multi-Purpose (3M Dental)] and 2) to evaluate the shear bond strength to dentin of these adhesive systems. METHODS: Single-bottle primer/adhesives [Bond 1 (Jeneric/Pentron), Single Bond, (3M Dental Products); One Step (Bisco Inc.), OptiBond Solo (Kerr Corp.), Prime & Bond 2.1 (L.D. Caulk-Dentsply), Syntac Single-Component (Ivoclar-Vivadent), Tenure Quilk with Fluoride (Den-Mat)] were used according to manufacturers' instructions to bond resin composite to flat dentinal surfaces of extracted human third molars (n = 15). All samples were thermocycled 300x. Twelve specimens per group were used to measure shear bond strength and three specimens were used to evaluate the interfacial morphology under SEM. A one-way ANOVA and Turkey's test were used to assess the results. RESULTS: Mean shear bond strengths in MPa +/- SD for the groups ranged from 22.27 +/- 4.5 MPa for Single Bond to 7.6 +/- 3.9 MPa for Syntac Single-Component. The statistical analysis indicated that Single Bond produced significantly higher (p < 0.001) bond strengths than Syntac Single-Component, Prime & Bond 2.1, Bond 1 and Tenure Quik With Fluoride. Bond strengths for Syntac Single-Component were significantly lower than One-Step, OptiBond Solo, Scotchbond Multi-Purpose Plus and Single Bond. SEM examination clearly revealed the formation of a distinct hybrid layer for all adhesive systems; however, minor variations in ultrastructure existed among products. SIGNIFICANCE: Some single-bottle primer/adhesive present in vitro bond strengths and hybrid layer formation similar to those found for the conventional three-component adhesive system tested.  相似文献   

3.
This in vitro study evaluated the effects of etchant type, surface moisture, and resin composite type on the shear bond strength of dentin adhesives. Three adhesives which bond to etched dentin were used in the study: All-Bond 2, Amalgambond, and Clearfil Photo Bond. Occlusal enamel was removed from 200 human molars to expose dentin. The dentin surfaces were etched, treated with a dentin adhesive system, and bonded with resin composite. After thermocycling and storage, the composite columns were fractured from dentin using an Instron machine. Bond strengths were calculated and subjected to a statistical analysis. Etchant type, surface moisture, and resin composite type all had significant effects on dentin bond strengths. Overall, the highest bond strengths were obtained with 10/3 etchant, moist dentin, and hybrid composite. The highest bond strengths for All-Bond 2 and Amalgambond were obtained by using the manufacturer's recommended etchant, moist dentin, and a hybrid composite. The mean bond strengths for All-Bond and Amalgambond under these conditions were 22.5 and 19.0 MPa, respectively. Clearfil Photo Bond had significantly lower bond strengths, but was relatively unaffected by changes in experimental conditions.  相似文献   

4.
PURPOSE: To evaluate a dental adhesive system that uses a single conditioning/primer agent. MATERIALS AND METHODS: Twenty-five flat enamel and dentin bonding sites were prepared to 600 grit on human molar teeth. The Clearfil Liner Bond 2 adhesive system was used to bond Clearfil AP-X composite to both enamel and dentin. After 24 hours of water storage, shear bond strengths were determined using an Instron testing machine. Fifty V-shaped cavity preparations were prepared in human molar teeth with an enamel and cementum margin. Composite restorations were placed using the new adhesive system. The teeth were stored for 24 hours, thermocycled, stained with AgNO3 , sectioned and examined for microleakage. SEM examinations were also completed to evaluate the effects of the treatment steps on enamel and dentin surfaces. RESULTS: Mean shear bond strengths for the experimental adhesive to enamel and dentin were 28.2 +/- 4.9 and 19.4 +/- 3.1 MPa. A t-test revealed that the enamel bond strength was significantly greater (P<0.05) than the dentin strength. No marginal leakage was observed from the enamel margins of the restorations. Three restorations showed minimal leakage from the cementum margins. SEM examinations showed resin penetration into both the conditioned enamel and dentin surfaces. The adhesive system produced high bond strengths to both enamel and dentin, exhibited very minimal microleakage and was easy to use.  相似文献   

5.
This study evaluated the influence of caries-detection dyes on the in vitro tensile bond strength of adhesive materials to sound dentin. Caries-free human molars were ground to expose superficial dentin. Two dyes (a commercial 0.5% basic fuchsin in propylene glycol and Cari-D-Tect) were applied to sound dentin and rinsed. Subsequently, the dentin was etched with phosphoric acid (35%) and rinsed, leaving a moist dentin surface. The adhesive (Prime & Bond 2.0) was applied in two layers and light cured. A composite (TPH Spectrum), a compomer (Dyract), and a hybrid ionomer (Advance) were used to prepare the bond-strength specimens with a 3-mm-in-diameter bonding area. Control groups were made without use of dyes. Six specimens were prepared for each group. After 24 hours in distilled water, tensile bond strength (MPa) was measured using a testing machine. Analysis of variance was used to evaluate the data. Without dyes, bond strengths of TPH Spectrum and Dyract with Prime and Bond 2.0 were similar and both values were significantly (P < 0.05) higher than that of Advance with Prime & Bond 2.0. Dyes for caries detection reduced the bond strength of TPH Spectrum and Dyract but not Advance when used with Prime and Bond 2.0.  相似文献   

6.
The purpose of this study was to evaluate the effect of etching and silane priming on bond strength to a feldspathic porcelain (VMK 68) of a composite resin (Clearfil APX). Two hydrofluoric acid etchants (2.5% and 5%) and seven different etching times (0, 30, 60, 90, 120, 150, and 180 seconds) were used to etch the porcelain specimens respectively. A self-curing bonding agent containing a silane coupler (Clearfil Porcelain Bond) was used on both etched and unetched porcelain surfaces. Etched relief patterns were observed by means of a scanning electron microscope, and the bond strengths between the photocured composite resin and the porcelain were determined. Scanning electron micrographs revealed complicated etching patterns with increased etching time periods. Shear testing results showed that the bond strength to the unetched porcelain of the composite resin was very low, and that etching periods for more than 30 seconds effectively enhanced the bond strength. Of the two etching agents applied to the unsilanated porcelain, the buffered 2.5% etchant produced higher bond strengths than the 5% etchant for all etching time periods except for 180 seconds. Silane priming was effective and critical for improving bond strength to the porcelain. Application of the silane bonding agent to the porcelain after hydrofluoric acid etching appeared to be suitable for achieving consistent bonding between the composite resin and the porcelain.  相似文献   

7.
The effect of sample thickness and dentin depth on bond strength of composite, compomer and resin modified glass ionomer have been investigated. The occlusal surfaces of 84 non carious human third molars were used for bonding. 4 subgroups were tested, superficial dentin with sample thickness 1 and 2 mm and deep dentin with sample thickness 1 and 2 mm respectively SBMP + /Z 100 composite showed 26 +/- 3.2, 22.3 +/- 4.5, 17 +/- 3.2 and 21.8 +/- 4.2 MPa shear bond strength to S. dentin 1 mm, deep dentin 1 and 2 mm and S. dentin 2 mm respectively. Compoglass reported 10.4 +/- 1.57, 9.1 +/- 2.3, 5.0 +/- 0.6 and 9.24 +/- 3.1 MPa while, Vitremer achieved 4.7 +/- 0.49, 3.2 +/- 0.39, 3.0 +/- 0.81 and 3.2 +/- 0.53 MPa. It is concluded that the highest bond strength can be achieved to superficial dentin in thickness or increments not more than 1 mm. And that both dentin depth and sample thickness might influence the quality of the bond to dentin with an effect that varies from one material to another depending upon the mechanism of bond of each material and its chemical composition.  相似文献   

8.
Four third-generation dentin bonding products (Scotchbond Multi-Purpose, Optibond, All-Bond 2, and Prisma Universal Bond 3) were tested to evaluate their tensile bond strength to enamel. Test enamel specimens were etched, primed, and polymerized according to each manufacturer's directions. Control specimens were treated identically except the primer application was eliminated. The results demonstrated that the dentin primer significantly increased the tensile bond strength of All-Bond 2, significantly decreased the tensile bond strength of Scotchbond Multi-Purpose and Optibond, and had no significant effect for Prisma Universal Bond 3. A one-way analysis of variance was run between the eight groups tested, and three significant subsets were found (P < .05). The subset with the highest mean tensile bond strengths consisted of Prisma Universal Bond 3 primed and nonprimed, All-Bond 2 primed, and Optibond nonprimed.  相似文献   

9.
The effect of the inclusion of aminobenzoic acid derivatives (ABAD) in a self-etching primer comprising 4-acryloxyethyltrimellitic acid (4-AET), HEMA and water on shear bond strength to ground dentin was investigated. The mean bond strengths to dentin were significantly increased by the inclusion of 0.307 mol% ABAD in the 4-AET/HEMA primer, when compared with the control (0 wt% ABAD) (p < 0.01). A particularly high value (38.0 MPa) of shear bond strength was obtained in the use of the primer containing p-nitroanthranilic acid (p-NAA). It seemed to assume that the effect of p-NAA could be caused by the strong electron-withdrawing group of -NO2. From SEM observation, it was found that bonding resin appeared to adhere strongly to the ground dentin without formation of any resin-tags in the dentinal tubules. It was thought that the ABAD with 4-AET/HEMA could perform facilitating photo-polymerization at the bonding interface, and resulted in increased bond strength to ground dentin, and that the bond strength could be affected by the electronegativities of substitutional groups of ABAD.  相似文献   

10.
PURPOSE: To investigate (1) the tensile bond strengths of four commercial dentin bonding systems to bovine crown and root dentin and (2) the structure of the hybrid layers for each system bonded to the two dentin substrates. MATERIALS AND METHODS: Superficial surfaces were exposed in bovine crown and root dentin. The teeth were embedded in plaster and a 3 mm diameter bonding area was demarcated. The four bonding systems used were All-Bond 2, Super-Bond D-Liner Plus, Clearfil Liner Bond II, and ProBond. Bonding procedures followed the manufacturers' instructions with the exception of Super-Bond D-Liner Plus where the primer was left in situ for 60 seconds. Tensile bond strengths were tested after 24-hour storage in 37 degrees C deionized water. Specimens were also prepared for SEM observation of the hybrid layer, after treatment with 10% phosphoric acid, and 10% phosphoric acid and 5% sodium hypochlorite. RESULTS: Statistically lower bond strengths to crown dentin when compared with root dentin were observed for All-Bond 2, whereas Liner Bond II showed the opposite (P < 0.01). Both ProBond and Super-Bond D-Liner Plus showed no statistical differences between crown and root dentin (P > 0.05). Hybrid layers could be observed for All-Bond 2, Liner Bond II and Super-Bond D-Liner Plus, with no apparent differences between the hybrid layers of crown and root dentin. In the case of ProBond, where the smear layer was not removed during the priming stage, it appeared that the primer had infiltrated and caused hybridization of the smear layer. The differences in bond strength were thought to be related to the different bonding mechanisms of each material, as well as possible variations in the crown and root dentin substrates.  相似文献   

11.
To understand the role of NMAA in the bonding of composite resin to a dentin surface, we investigated the effects of N-methacryloyl amino acid (NMAA) application on the expansion of aggregated collagen fibers, formation of a hybrid layer, and the tensile bond strength between composite resin and dentin. Four NMAA derivatives--N-methacryloyl-alpha-glycine (NMGly), N-methacryloyl-gamma-amino n-butyric acid (NMBu), N-methacryloyl-alpha-hydroxyproline (NMHPro), and N-methacryloyl-alpha-glutamic acid (NMGlu)--were prepared and applied to dentin surfaces which had been etched with 40% by mass H3PO4 and air-blown. The shrunken collagenous layer expanded by approximately 50% to 70% by volume of the original collagenous layer thickness after application of the NMAA primers. Application of the bonding agent and composite resin after NMAA treatment resulted in the formation of a hybrid layer. The thickness of the hybrid layer was somewhat smaller than the collagenous layer formed by the NMAA treatment only, regardless of the type of NMAA used. The thickness of the hybrid layer was approximately ten times larger than that formed without NMAA treatment. Although all NMAA primers formed hybrid layers of similar thickness, higher tensile bond strengths, from 13 to 15 MPa, were obtained when etched and air-blown dentin was treated with NMBu, NMGly, or NMGlu. NMHPro gave only 6.6 MPa, a value similar to that obtained when no NMAA was used. We concluded, therefore, that formation of the hybrid layer is a necessary but insufficient condition for high bond strength.  相似文献   

12.
PURPOSE: To determine the quantitative contribution of dentin hybridization to bonded assembly strength and demonstrate the micromorphology of the interface with and without collagen present. MATERIALS AND METHODS: Four groups of 10 molar teeth were finished to a 320 grit dentin smear layer. Two groups served as controls and two experimental groups were subjected to collagenase digestion of the collagen exposed by acid conditioning. All-Bond 2 and Amalgambond were used to bond Bisfil and Epic resin composite, respectively. Stored in water at 37 degrees C for 24 hours the assemblies were tested in a shear mode at a crosshead speed of 5 mm/minute. Means and standard deviations were subjected to analysis for statistical significance. Twenty four teeth in four groups were examined by scanning (SEM) and transmission electron microscopy (TEM) for the relationship between resin and conditioned dentin with and without the collagen network. RESULTS: All-Bond 2 and Amalgambond controls were 28.41 +/- 3.9 and 19.04 +/- 5.96 MPa, collagenase-treated groups scored 26.43 +/- 2.90 and 19.70 +/- 4.25 MPa respectively. No significant difference existed between the control and experimental groups. SEM showed an intertubular collagen network with patent tubules and a pronounced porous, irregular dentin topography following collagen digestion. A distinct hybrid zone and tubular penetration was observed but the collagenase-treated specimens showed only resin in the tubules and their lateral extensions. TEM confirmed the absence of a distinct hybrid zone in the collagenase groups with a tight, gap-free junction between the resin and the undemineralized dentin. An electron dense zone (< 50 nm) at the leading edge of conditioning was observed for All-Bond 2 and Amalgambond groups. It was concluded that the resin-reinforced or hybridized, collagenous network does not detract from, nor contribute any significant quantitative value per se to dentin bonding with the systems tested.  相似文献   

13.
OBJECTIVES: The goal of this study was to evaluate the effects of cryopreservation of teeth on dentin bond strength as a function of remaining dentin thickness. METHODS: Flat occlusal surfaces of human dentin were prepared in 54 freshly extracted teeth and 54 thawed, cryopreserved teeth. In each group, 18 bonds were performed in superficial dentin, 18 in mid-coronal, and 18 in deep dentin. A resin composite cylinder, 3 mm in diameter and in height, was bonded orthogonally to the surface. After storage in distilled water at room temperature for 1 wk, the bonded cylinders underwent shear testing at a crosshead speed of 0.5 mm min-1. The mean remaining dentin thickness was calculated after longitudinally sectioning the debonded samples through the center of the bonded area. Non-parametric statistical analyses were used to correlate the shear bond strength with the remaining dentin thickness among the storage modes and within the different dentin regions. RESULTS: The lowest shear bond strength values were found in the deep dentin of both fresh and cryopreserved dentin, while the values in deep and mid-coronal dentin were not significantly different in fresh and cryopreserved dentin. In the superficial and mid-coronal dentin of cryopreserved samples, the shear bond strength values were identical. There was a significant difference between the shear bond strength values in the superficial dentin of fresh teeth compared to the values for cryopreserved teeth. SIGNIFICANCE: According to the experimental conditions, tooth cryopreservation shows some promise as a substitute for freshly extracted teeth, provided that the experiments are performed in midcoronal and deep dentin.  相似文献   

14.
This study compared the effects of different dentin surface treatments on the shear bond strengths of three adhesive systems. The adhesive systems included a resin-modified glass ionomer, Fuji II LC, and two dentin bonding systems, One Step and Scotchbond Multi-Purpose Plus. The surface treatments compared for each adhesive system were as follows: 1) the controls, which were conditioned, 2) air abrasion at 120 psi without conditioning, 3) air abrasion at 160 psi without conditioning, 4) air abrasion at 120 psi with conditioning, and 5) air abrasion at 160 psi with conditioning. The KCP 1000 Whisperjet was used for all air-abrasive specimens. Controls for each adhesive material (Fuji II LC, One Step, Scotchbond Multi-Purpose Plus) were bonded using manufacturers' recommendations. Results showed that air abrasion significantly lowered bond strength of the resin-modified glass ionomer, conditioned or nonconditioned (P < 0.01). Air abrasion alone significantly lowered bond strengths of the dentin bonding agent systems (P < 0.01). However, air abrasion plus conditioning of the dentin surface resulted in bond strengths that were similar to the conditioned-only specimens (P < 0.01).  相似文献   

15.
This study evaluated the interaction of five clinical application techniques and the shear bond strength of four DBAs (OptiBond FL, Clearfil SE Bond, PQ1 and Prime & Bond NT). A hybrid resin composite (Herculite XRV restorative resin) was attached to human dentin surfaces using five application techniques: Group A--adhesive spread with a 3M brush for 30 seconds, followed by compressed air 0.5 cm from the surface for one second to remove the excess adhesive. Group B--adhesive spread with a 3M brush for 30 seconds, followed by compressed air 0.5 cm from the surface for three seconds to remove the excess adhesive. Group C--adhesive spread with 3M brush for 30 seconds, excess adhesive removed with a clean brush, two strokes side by side, no compressed air. Group D--adhesive spread with a Micro-applicator brush for 30 seconds followed by compressed air 0.5 cm from the surface for one second to remove the excess adhesive. Group E--adhesive spread with a Micro-applicator brush for 30 seconds, the excess adhesive removed with a clean brush, two strokes side by side and no compressed air. The specimens were stored in distilled water at 37 degrees C for 24 hours, followed by thermocycling between 5 degrees C and 55 degrees C for 1,000 cycles. The shear bond strengths were determined on a universal testing machine operating with a crosshead speed of 5 mm/minute. The fracture sites were examined by 20x stereo microscope to determine the type of failure that occurred during the debonding procedure. Bond strength data were compared with analysis of variance at a significance level of p<0.05. Post hoc comparisons of means were performed with t-tests with p-values adjusted for multiple comparisons. This in vitro study concluded that there was an interaction between the application technique and bonding agent tested. All DBAs utilized the one-second compressed air technique, which yielded the highest bond strengths.  相似文献   

16.
Orthodontic bands often fail clinically at the band-cement interface. Hybrid ionomer and resin cements and a glass ionomer control were bonded to photo-etched and standard band materials, both of which were tested in as-received and air-abraded conditions. Cements were placed in a 3 mm diameter mold at the bonding interface and bonded to 6 x 6 mm stainless steel band specimens mounted to acrylic blocks. Specimens were stored in water for 24 hours at 37 degreesC and debonded in tension on a testing machine at 0.05 cm/minutes. Bond strengths (MPa) were calculated and data were analyzed by analysis of variance. Bond strengths to as-received bands were less than 3.4 MPa for cements tested, whereas bond strengths to air-abraded bands ranged from 7.1 to 17.7 MPa, except for the glass ionomer control. Air abrasion of band materials provides highly increased bond strength of hybrid ionomer and resin cements.  相似文献   

17.
PURPOSE: To evaluate the shear bond strength to the dentin of permanent teeth and failure site of Dentastic hydrophilic dentin bonding agent. MATERIALS AND METHODS: Forty permanent noncarious molar teeth stored in distilled water were obtained. The teeth were cleaned with pumice and a rubber cup. The mesio-buccal surface of the teeth was ground flat with hand pressure with a series of SiC paper ending with the 600 grit to provide a uniform surface on dentin to which the resin composite could be applied. After preparing the tooth surface, the teeth were stored in distilled water for 48 hours. They were then divided at random into four groups of 10 specimens each: Group 1: Dentastic, five coats of primer; Group 2: Dentastic, three coats of primer; Group 3: Dentastic, five coats of primer, light-cured adhesive before resin bonding; Group 4: Dentastic, three coats of primer, light-cured adhesive before resin bonding. All specimens were thermocycled (500x) and sheared in a testing machine. After shear testing, the debonded sites of all samples were examined with a stereomicroscope and a scanning electron microscope. RESULTS: The results in MPa were: Group 1: 22.63 +/- 6.24; Group 2: 23.35 +/- 5.14; Group 3: 23.58 +/- 5.66; Group 4: 27.26 +/- 8.22. ANOVA and Student-Newman-Keuls showed no statistically significant difference between the groups. In all groups, all specimens failed at the dentin (dentin cohesive failure = dentin fracture) or at the resin (resin cohesive failure = resin fracture). This means that the bond strength of the product is stronger than the cohesive strengths of the dentin and the resin.  相似文献   

18.
PURPOSES: To evaluate (1) the shear bond strength to the dentin of primary teeth and failure site of hydrophilic dentin bonding agents, (2) the interfacial micromorphology of these adhesives on primary teeth. MATERIALS AND METHODS: Seventy-six primary noncarious molars stored in distilled water were obtained. The teeth were cleaned with pumice and a rubber cup. The mesio-buccal surface of the teeth was ground flat with hand pressure with a series of SiC paper ending with the 600 grit to provide a uniform surface on superficial dentin to which the adhesives and resin composite could be applied. After preparing the dentin surface, the teeth were stored in distilled water for 48 hours. They were then rinsed and dried with compressed air and divided at random into four groups of 16 specimens each: Group 1: Dentastic; Group 2: One-Step; Group 3: Prime & Bond 2.0; Group 4: Compoglass SCA. Z100 resin was used in all groups. All specimens were thermocycled (500x) and sheared in an Instron machine. After shear testing, the debonding sites of all samples were examined with a stereomicroscope and selected samples were also examined with the scanning electron microscope. Three additional samples per group were used to evaluate the resin adaptation to dentin. RESULTS: The results in MPa were: Dentastic 19.62 (4.67); One-Step 11.24 (3.67), Prime & Bond 22.38 (6.47), Compoglass SCA 18.88 (4.04). ANOVA (P < 0.0001) revealed that there was a significant difference between the groups. The Student-Newman-Keuls test (P < 0.05) showed no statistically significant difference between Dentastic, Prime & Bond and Compoglass SCA. However, these three groups were statistically significantly higher than One Step. In the Dentastic group, 14 of 16 samples revealed resin cohesive failure (resin fracture) while two of 16 displayed dentin cohesive failure (dentin fracture). In the One Step group, 15 samples failed at the resin and one sample showed dentin cohesive failure. In the Prime & Bond group, 12 specimens revealed resin cohesive failure while four displayed dentin cohesive failure. In the Compoglass SCA group, 13 samples had resin cohesive failures while three had dentin cohesive failures. All samples revealed an intimate adaptation to the dentin displaying resin tag formation.  相似文献   

19.
PURPOSE: To measure and compare the in vitro shear bond strength (SBS) of the following three pairs of multi- and simplified-step dentin bonding systems: OptiBond vs. OptiBond FL, All-Bond 2 vs. One-Step, and Tenure vs. Tenure Quik. MATERIALS AND METHODS: 60 extracted human mandibular molars were sectioned perpendicular to the long axis 1 mm above the CEJ to expose the dentin bonding surface. After being wet-ground to 600 grit with SiC abrasive papers, rinsed and dried, the teeth were individually mounted in phenolic rings with epoxy resin, and randomly assigned into six equal groups of 10 each. The dentin surfaces were treated with the above mentioned dentin bonding systems, and a gelatin cylinder filled with resin composite (Pertac-Hybrid) was directly bonded to each pretreated surface. After 7-day storage in 37 degrees C water followed by thermocycling, the specimens were shear tested to failure on an Instron machine. Data were analyzed by independent t-tests, one-way ANOVA, and Duncan's Multiple Comparison tests at alpha = 0.05. RESULTS: Except for the pair Tenure/Tenure Quik, the differences between the pairs All-Bond 2/One-Step and OptiBond/OptiBond FL were statistically significant with All-Bond 2 and OptiBond FL yielding higher shear bond strength (P < 0.05). Findings of this study indicated that OptiBond FL was the only simplified-step system showing improved bond strength.  相似文献   

20.
In an attempt to compare the morphology of the resin-dentin interface in areas where the dentinal tubules run perpendicularly or at an angle to the cavity surface with that of areas where they run parallel to it, we studied a dentin adhesive system using transmission electron microscopy and fluorescence confocal laser scanning microscopy. The design of the study included the simulation of the normal hydrostatic pressure within the pulp and the dentinal tubules. Following acid etching of the dentinal surface with maleic acid/HEMA, the smear layer was removed, and a superficial zone was demineralized in such a way that the exposed collagenous dentin matrix retained its integrity. Confocal laser scanning microscopal investigations using primer labeled with rhodamine B showed that the penetration of the primer occurred not only vertically via surface porosities, but mainly laterally, via the dentinal tubules. The adhesive resin labeled with fluorescein completely infiltrated the demineralized layer, thereby forming a hybrid layer. The orientation of the dentinal tubules had a profound effect on the formation of the hybrid layer. In areas with perpendicular tubule orientation, the layer was 3.2 +/- 0.8 microns thick, showing solid 27.2 +/- 0.8 microns long resin tags in the dentinal tubules, and a network of tiny tags in their side-branches. In areas with parallel tubule orientation the layer was significantly thinner (1.3 +/- 0.6 microns) and resin tags were absent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号