首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
多视点自动立体显示有望成为今后主流的三维显示技术,它是一种无需借助任何辅助观察设备的多视点、多观察区、高分辨率、显示效果逼真的三维显示方式。阐述了基于多投影的多视点自动立体显示系统的设计原理,详细地描述了系统的软硬件构架,建立了基于多投影仪和水平光学各向异性显示结构的自动立体显示样机,开发了投影仪阵列自动校准系统,提高了投影仪的校准精度,避免了因投影仪数目多而导致的繁琐的校准过程。实验结果能够给观众带来逼真的三维视觉体验。  相似文献   

2.
In this study, we explored how stereoscopic depth affects performance and user experience in a mobile device with an autostereoscopic touch display. Participants conducted a visual search task with an image gallery application on three layouts with different depth ranges. The task completion times were recorded, and the participants were asked to rate their experiences. The results revealed that the image search times were facilitated by a mild depth effect and that too great a depth slowed search times and decreased user-experience ratings.  相似文献   

3.
Abstract— Multi‐view spatial‐multiplexed autostereoscopic 3‐D displays normally use a 2‐D image source and divide the pixels to generate perspective images. Due to the reduction in the resolution of each perspective image for a large view number, a super‐high‐resolution 2‐D image source is required to achieve 3‐D image quality close to the standard of natural vision. This paper proposes an approach by tiling multiple projection images with a low magnification ratio from a microdisplay to resolve the resolution issue. Placing a lenticular array in front of the tiled projection image can lead to an autostereoscopic display. Image distortion and cross‐talk issues resulting from the projection lens and pixel structure of the microdisplay have been addressed with proper selection of the active pixel and adequate pixel grouping and masking. Optical simulation has shown that a 37‐in. 12‐view autostereoscopic display with a full‐HD (1920 × 1080) resolution can be achieved with the proposed 3‐D architecture.  相似文献   

4.
Abstract— The luminance distribution of autostereoscopic 3‐D displays using the parallax‐barrier method was simulated by two different calculation methods. The first method directly calculates the total luminance distribution by summing light rays coming from different positions on the imaging display through a parallax barrier at each eye position. The second method first calculates the angular distribution of light rays coming from the imaging display through a parallax barrier and then derives the spatial luminance distribution for each eye position. The two methods resulted in an equivalent distribution. Yet, the second method outperforms the first method in terms of calculating the speed and versatility.  相似文献   

5.
When estimating human gaze directions from captured eye appearances, most existing methods assume a fixed head pose because head motion changes eye appearance greatly and makes the estimation inaccurate. To handle this difficult problem, in this paper, we propose a novel method that performs accurate gaze estimation without restricting the user's head motion. The key idea is to decompose the original free-head motion problem into subproblems, including an initial fixed head pose problem and subsequent compensations to correct the initial estimation biases. For the initial estimation, automatic image rectification and joint alignment with gaze estimation are introduced. Then compensations are done by either learning-based regression or geometric-based calculation. The merit of using such a compensation strategy is that the training requirement to allow head motion is not significantly increased; only capturing a 5-s video clip is required. Experiments are conducted, and the results show that our method achieves an average accuracy of around 3° by using only a single camera.  相似文献   

6.
Abstract— A method to increase the viewing resolution of an autostereoscopic display without increasing the density of microlenses is proposed. Multiple projectors are used for the projection images to be focused and overlaid on a common plane in the air behind the microlens array. The multiple overlaid projection images yield multiple light spots inside the region of each elemental lenslet of the microlens array. This feature provides scalable high‐resolution images by increasing the number of projectors. Based on the proposed method, a prototype display that includes 15 projectors was designed and built. 3‐D images were successfully reproduced on the prototype display with full parallax and a wide viewing angle of 70°.  相似文献   

7.
In order to investigate visual experience for watching the autostereoscopic three‐dimensional (3D) projection display, we conduct a subjective evaluation experiment by a questionnaire when viewing video clips. Factor analysis is adopted to classify the evaluation items for the perpetual constructs of visual experience. Then a mixed design with repeated measurement analysis of variance with dimension and display duration as factors is carried out on the evaluation data to check the factorial effects and interactions for statistical significance. The results of factor analysis extract five factors including visual comfort, image quality, distortion, naturalness, and presence, which can be used as comprehensive indicators to evaluate the autostereoscopic 3D projection display. The results of analysis of variance indicate that image quality, which is used to assess two‐dimensional contents, is no longer applicable. It is necessary to give consideration to depth when evaluating 3D visual experience. Although 3D scenes enhance the overall subjective performance such as naturalness and presence, the health issues and stereoscopic distortion related to the introduction of depth cannot be ignored.  相似文献   

8.
Abstract— Autostereoscopic 3‐D display technologies enable a more immersive media experience by adding real depth to the visual content. However, the method used for the creation of a sensation of depth or stereo illusion contains several display design and content‐related issues that need to be carefully considered to maintain sufficient image quality. Conventionally, methods used for 3‐D image‐quality evaluations have been based on subjective testing. Optical measurements, in addition to subjective testing, can be used as an efficient tool for 3‐D display characterization. Objective characterization methods for autostereoscopic displays have been developed. How parameters affecting stereo image quality can be defined and measured, and how their effect on the stereo image quality can be evaluated have been investigated. Developed characterization methods are based on empirically gathered data. In this paper, previously presented methodology for two‐view displays is extended to cover autostereoscopic multiview displays. A distinction between displays where the change in content occurs in clear steps when the user moves in front of the display, and displays where the apparent movement of the objects is more continuous as a function of the head movement is made. Definitions for 3‐D luminance and luminance uniformity, which are equally important, as well as 3‐D crosstalk, which is the dominant factor in the evaluations of the perceived 3‐D image quality, is focused upon.  相似文献   

9.
Abstract— This study develops an autostereoscopic display based on a multiple miniature projector array to provide a scalable solution for a high‐resolution 3‐D display with large viewing freedom. To minimize distortion and dispersion, and to maximize the modulation transfer function (MTF) of the projection image to optimize 3‐D image quality, a dedicated projection lens and an accurate six‐axis adjusting platform for the miniature projector were designed and fabricated. Image‐blending technology based on a lookup table was adopted to combine images from 30 miniature projectors into a seamless single image. The result was a 35‐in. autostereoscopic display with 60 views ata 30° viewing angle, 90° FOV, and large range of viewing distance. The proposed system exhibits very smooth motion parallax when viewers move around in front of it.  相似文献   

10.
Abstract— Moiré‐reduction methods for integral videography displays are proposed. Integral videography is based on the principles of integral photography and extended real‐time video processing. There are two moiré‐reduction methods that can be used for integral videography displays that have a lens array and a liquid‐crystal display. The first is color moiré, and the second is intensity moiré. To reduce color moiré, an optimized color‐filter layout in the liquid‐crystal display was used. To reduce intensity moiré, a defocusing method was used. Adesign of a viewing area for the integral videography display is also presented. To control the viewing area, the lens pitch and the shape of the integral videography elemental image was changed. A 5‐in. integral videography display was implemented by using the proposed methods, and an integral videography display was evaluated.  相似文献   

11.
全息透镜板的高精度拼接与装配是基于全息透镜技术的大屏幕LED裸眼3D显示系统搭建中的关键问题。理论计算与实验结果表明,全息透镜板与LED显示模组横向相对位置误差小于1.332mm时,可以满足显示的要求。基于裸眼3D显示系统的投射条纹,提出了基于投射条纹的全息透镜板位置实时调整方法。依据此方法提出了基于极大值测量条纹中心间距的图像处理算法,并结合LabView编写了图像处理程序。实验结果表明,使用该方法测得的亮暗条纹间距的测量精度为0.1mm,反算出全息透镜板与LED屏之间的位置误差小于0.03mm,满足实时调整全息透镜板位置的要求,可以作为全息透镜板在线拼接的检测方法。  相似文献   

12.
Abstract— A high‐resolution autostereoscopic 3‐D projection display with a polarization‐control space dividing the iris‐plane liquid‐crystal shutter is proposed. The polarization‐control iris‐plane shutter can control the direction of stereo images without reducing the image quality of the microdis‐play. This autostereoscopic 3‐D projection display is 2‐D/3‐D switchable and has a high resolution and high luminance. In addition, it has no cross‐talk between the left and right viewing zones, a simple structure, and the capability to show multi‐view images.  相似文献   

13.
Abstract— Display‐measurement methods different from conventional 2‐D display measurements are needed for verifying the optical characteristics of autostereoscopic (3‐D) displays and for comparing different 3‐D display technologies. Industry is lacking standardized measurement methods, and the reported results can not always be compared. The selected set of characteristics discussed in this paper and partly defining the quality of the 3‐D experience are crosstalk, viewing freedom, and optimum viewing distance. Also, more conventional display characteristics such as luminance are discussed, since the definitions for these characteristics in 3‐D mode usually differ from those used for the 2D displays. We have investigated how these chosen 3‐D display characteristics can be objectively measured from transmissive two‐view and multiview 3‐D displays. The scope of this article is to generally define those basic characteristics as well as the different measurement methods. Most of the 3‐D characteristics can be derived from the luminance and colors versus the viewing angle. Either a conoscopic or a goniometric measurement system can be used, as long as the angular and stray‐light properties are suitable and known. The characteristics and methods are currently discussed in the display‐quality standardization forums.  相似文献   

14.
Abstract— The use of an electric‐field‐driven liquid‐crystal (ELC) lens cell for switching between a 3‐D and 2‐D display is proposed. Due to the phase retardation of the non‐uniform LC directors, an ELC lens functions the same as a geometric lens. The parameters of an ELC for 3‐D applications are optimized through the simulation of the electrode configuration and voltage levels. A prototype was made where the ELC lens is placed in front of a liquid‐crystal display (LCD) 15 in. on the diagonal with a 99‐μm subpixel pitch. Under zero voltage, the ELC lens is a transparent medium and the users can see a clear 2‐D image. In 3‐D mode, the ELC lens array performs the same as a cylindrical lens array to the incident vertical polarization under suitable driving voltages. Placing a half‐wave plate between the LCD and ELC lens is proposed to change the polarization of the LCD to be parallel with the polarization lens direction of the ELC lens. The measurement of the horizontal luminance profile, performance of the ELC lens, and feasibility for 3‐D/2‐D switching was verified. The fabrication process for the ELC lens is compatible with the current LCD production process and enables the accurate control of the lens pitch of the ELC lens.  相似文献   

15.
The conflict between vergence and accommodation is the main perceptual factors contributing to visual discomfort when viewing autostereoscopic display. The key factors relevant to the accommodation and vergence are the ambient illumination and the contrast. The current study was a 2 × 3 × 3 mixed design comparing VFSI and VIMS symptoms between 2D and 3D video clips with three contrast levels under three ambient illumination levels on the autostereoscopic display. Twenty participants were required to evaluate the degree of discomfort by filing out questionnaires after watching those video clips. According to the result analysis, the 3D viewing participants reported more severe symptoms compared to 2D. The moderate contrast conditions were found to be the optimum for viewing comfort. The difference between VFSI and VIMS symptoms become larger with increasing contrast. The results also suggested the optimum 3D illumination condition should not be too high to effectively relieve visual discomfort. VIMS symptoms were more sensitive to the changes in ambient illumination than VFSI. Moreover, significant interaction between contrast and ambient illumination was found. Participants felt the most comfortable in the combination effect of moderate level of contrast and the high level of ambient illumination.  相似文献   

16.
Abstract— A depth‐map estimation method, which converts two‐dimensional images into three‐dimensional (3‐D) images for multi‐view autostereoscopic 3‐D displays, is presented. The proposed method utilizes the Scale Invariant Feature Transform (SIFT) matching algorithm to create the sparse depth map. The image boundaries are labeled by using the Sobel operator. A dense depth map is obtained by using the Zero‐Mean Normalized Cross‐Correlation (ZNCC) propagation matching method, which is constrained by the labeled boundaries. Finally, by using depth rendering, the parallax images are generated and synthesized into a stereoscopic image for multi‐view autostereoscopic 3‐D displays. Experimental results show that this scheme achieves good performances on both parallax image generation and multi‐view autostereoscopic 3‐D displays.  相似文献   

17.
This study was conducted to investigate the virtual display effects on direct interaction performance metrics such as accuracy, task completion time, and comfort. Eighteen participants performed tapping (pointing) tasks in the coronal plane by directly reaching for tapping targets at three egocentric distance levels, with three indices of difficulty at each egocentric distance. The position data and severity of cybersickness symptoms were collected with a motion system and a symptom questionnaire, respectively. The results indicated that accuracy was higher with the stereoscopic widescreen display than with the head mounted display. However, no significant differences in task completion time, throughput, and cybersickness were observed between the two VR displays. In addition, increasing the egocentric distance improved accuracy and lengthened the task completion time, whereas increasing the task difficulty lengthened the task completion time but did not affect the accuracy. The findings are important and informative for users in choosing between the two virtual reality displays. Generally, the stereoscopic widescreen display can be recommended for tasks requiring high egocentric distance accuracy in the coronal plane. Furthermore, developers may refer to these findings in designing interfaces that allow a more natural way of interaction for users.  相似文献   

18.
Abstract— A multi‐view depth‐fused 3‐D (DFD) display that provides smooth motion parallax for wide viewing angles is proposed. A conventional DFD display consists of a stack of two transparent emitting screens. It can produce motion parallax for small changes in observation angle, but its viewing zone is rather narrow due to the split images it provides in inclined views. On the other hand, even though multi‐view 3‐D displays have a wide viewing angle, motion parallax in them is discrete, depending on the number of views they show. By applying a stacked structure to multi‐view 3‐D displays, a wide‐viewing‐angle 3‐D display with smooth motion parallax was fabricated. Experimental results confirmed the viewing‐zone connection of DFD displays while the calculated results show the feasibility of stacked multi‐view displays.  相似文献   

19.
Abstract— A flat‐panel display with a slanted subpixel arrangement has been developed for a multi‐view three‐dimensional (3‐D) display. A set of 3M × N subpixels (M × N subpixels for each R, G, and B color) corresponds to one of the cylindrical lenses, which constitutes a lenticular lens, to construct each 3‐D pixel of a multi‐view display that offers M × N views. Subpixels of the same color in each 3‐D pixel have different horizontal positions, and the R, G, and B subpixels are repeated in the horizontal direction. In addition, the ray‐emitting areas of the subpixels within a 3‐D pixel are continuous in the horizontal direction for each color. One of the vertical edges of each subpixel has the same horizontal position as the opposite vertical edge of another subpixel of the same color. Cross‐talk among viewing zones is theoretically zero. This structure is suitable for providing a large number of views. A liquid‐crystal panel having this slanted subpixel arrangement was fabricated to construct a mobile 3‐D display with 16 views and a 3‐D resolution of 256 × 192. A 3‐D pixel is comprised of 12 × 4 subpixels (M = 4 and N = 4). The screen size was 2.57 in.  相似文献   

20.
Abstract— A 2‐D/3‐D convertible display using two lenticular lenses has been developed. It shows 2‐D pictures in full resolution and 3‐D autostereoscopic pictures in half resolution by moving one lens relative to the other. The lens assembly consists of thin metal frames, two lenticular lenses, and two shape‐memory‐alloy (SMA) wires used as actuators. While this assembly is applicable to flat‐panel displays of any kind, its simple structure and low power consumption make it best suited to mobile terminals, such as PDAs and mobile phones. Here, we describe its structure and present evaluation results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号