首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 81 毫秒
1.
针对原始鲸鱼优化算法(WOA)收敛速度慢、全局搜索能力弱、求解精度低且易陷入局部最优等问题,提出一种混合策略来改进的鲸鱼优化算法(LGWOA)。首先将莱维飞行引入鲸鱼全局搜索的公式中,通过莱维飞行加大全局搜索步长,扩大搜索空间、提高全局搜索能力;其次,在鲸鱼螺旋上升阶段,加入一个自适应权重参数来提高算法的局部搜索能力和求解精度;最后结合遗传算法的交叉变异思想平衡算法的全局搜索和局部搜索能力,维持种群的多样性,规避陷入局部最优。通过对12个基准测试函数从2个角度进行实验对比分析,结果表明,基于混合策略改进的鲸鱼优化算法在收敛速度和求解精度上均有明显提升。  相似文献   

2.
针对鲸鱼优化算法(whale optimization algorithm ,WOA)容易陷入局部最优和收敛精度低的问题进行了研究,提出一种改进的鲸鱼优化算法(IWOA)。该算法通过准反向学习方法来初始化种群,提高种群的多样性;然后将线性收敛因子修改为非线性收敛因子,有利于平衡全局搜索和局部开发能力;另外,通过增加自适应权重改进鲸鱼优化算法的局部搜索能力,提高收敛精度;最后,通过随机差分变异策略及时调整鲸鱼优化算法,避免陷入局部最优。实验选取九个基准函数,所有算法均迭代30次,结果表明:改进的鲸鱼优化与原鲸鱼优化算法以及五种改进的鲸鱼优化算法相比,其均值和标准差均优于其他算法,收敛曲线也优于其他大多数算法。说明改进的鲸鱼优化算法收敛精度和算法稳定性最佳,收敛速度较其他大多数改进的鲸鱼优化算法明显加快。  相似文献   

3.
混合策略改进的鲸鱼优化算法   总被引:1,自引:0,他引:1  
郝晓弘  宋吉祥  周强  马明 《计算机应用研究》2020,37(12):3622-3626,3655
针对标准鲸鱼优化算法易出现搜索速度慢、寻优精度低及早熟收敛等问题,提出一种混合策略改进的鲸鱼优化算法。首先采用混沌映射生成初始种群增加种群多样性,为算法全局搜索奠定基础;然后引入非线性策略改进收敛因子和惯性权重,平衡算法的全局探索与局部开发能力并加快收敛速度;最后根据群体适应度方差设定阈值进行变异操作,避免算法出现早熟收敛的现象。通过对12个典型基准函数进行三方面的性能测试,实验结果表明,改进算法在搜索速度、收敛精度等方面有显著提高,且摆脱陷入局部最优解的能力强。  相似文献   

4.
针对传统启发算法在解决物流配送中心选址问题上易陷入局部最优,导致降低物流系统效率降低的问题,提出一种改进的鲸鱼优化算法IWOA(Improved Whale Optimization Algorithm)。通过综合变异策略和随机正弦惯性权重对传统算法进行改进,提高收敛精度和全局搜索能力。实验仿真结果表明,改进的鲸鱼算法较其他启发算法具有更高的计算性能,可以合理计算出配送中心地址,很大程度提高了物流配送的运送效率。  相似文献   

5.
针对传统鲸鱼优化算法收敛速度慢、易陷入局部最优等问题,提出一种基于混合策略改进的鲸鱼优化算法。首先,引入非线性调整策略改进收敛因子,平衡算法的全局探索与局部开发能力并加快算法收敛速度;然后,将自适应权重系数引入鲸鱼位置更新式中,从而提高算法的寻优精度;最后,结合人工蜂群算法的limit阈值思想,使算法能够有效跳出局部最优,改善算法早熟收敛现象。通过对14个基准测试函数在不同维度上的仿真实验表明,改进算法具有较高的寻优精度和较快的收敛速度。  相似文献   

6.
针对标准WOA算法初始种群分布不均、收敛速度较慢、全局搜索能力弱且易陷入局部最优等问题,提出一种混合策略改进的鲸鱼优化算法。采用Sobol序列初始化种群以使初始解在解空间分布更均匀;通过非线性时变因子和惯性权重平衡并提高全局搜索及局部开发能力,并结合随机性学习策略增加迭代过程中种群的多样性;引入柯西变异提升算法跳出局部最优的能力。通过对12个基准函数和一个水资源需求预测模型的参数估计进行优化实验,结果表明,基于混合策略改进的鲸鱼优化算法在寻优精度及收敛速度上均有明显提升。  相似文献   

7.
针对电力系统经济负荷分配这一典型的非凸、非线性、组合优化问题,提出一种将改进差分进化算法和鲸鱼算法相结合的优化算法。该算法首先在鲸鱼优化算法中引入了非线性的收敛变化策略,加速寻优算法的迭代;再利用差分进化算法的交叉和选择,丰富算法种群个体信息,增强优化算法的全局收敛性;同时引入一种淘汰机制,将适应度较好的个体信息更快地保留用于下一次鲸鱼优化算法的迭代,提高了求最优解的速度和精度;最后,对多个经济负荷分配问题进行了测试,将该算法与标准鲸鱼算法、标准差分进化算法进行对比,验证了差分进化鲸鱼算法可以更合理地配置电力系统的经济负荷,能够有效找到可行解,避免陷入局部最优,能实现经济负荷的合理分配。  相似文献   

8.
针对鲸鱼优化算法(WOA)在解决高维复杂问题时存在收敛速度慢、全局搜索能力不足的问题,提出一种最优最差个体混合反向学习的WOA(MWOA)。首先,引入一种自适应惯性权重,用于调节寻优前期的步长和寻优后期的种群多样性;其次,提出一种混合反向学习策略并将其融入WOA,以提高算法的收敛精度;最后,引入一种参数非线性衰减策略,以提高其在高维度以及复杂问题上的探索开发能力和收敛速度。将MWOA与WOA、MS-WOA、IWOA对10个基准函数的优化效果进行比较,结果表明MWOA在收敛速度、优化精度上相较对比算法均有所提升。另外,将MWOA与CODE、CPSO、EGWO和DIHS进行比较,结果表明MWOA具有较好的收敛精度。  相似文献   

9.
在边缘服务器资源受限的情况下,如何设计合理的资源管理和任务调度方案是一项重要的研究内容.为提升系统服务效用,提出一种联合资源分配和计算卸载的设计方案.首先,借助二分搜索法和拉格朗日乘子法得到通信和计算资源的最佳匹配.然后,基于融合多种策略的鲸鱼优化算法来求解卸载决策,其中包括调整收敛因子为指数幂级的非线性变化策略,平衡探索和利用阶段的自适应权重策略,三角形和Levy飞行的游走策略,同时在适应度评价中引入罚函数来达到用户接入数量的约束限制,最后利用V型传递函数制定二进制卸载策略.仿真结果表明,在与其他基准方案的多项指标评估中,所提方案能有效增加网络吞吐量,显著提高系统效用.  相似文献   

10.
刘亮  何庆 《计算机应用研究》2020,37(4):1004-1009
为提高鲸鱼优化算法求解复杂函数优化问题的性能,提出一种基于自适应参数及小生境技术的改进鲸鱼优化算法。首先,引入自适应概率阈值协调算法的全局探索及局部开发能力;其次,利用自适应位置权重对鲸鱼位置更新公式进行调整,提高算法的收敛速度及寻优精度;最后,采用预选择小生境技术,避免算法出现早熟收敛的现象。通过对12个典型基准测试函数的仿真表明,改进算法的寻优精度和收敛速度较对比算法均有明显提升,证明了提出的改进策略能有效提高鲸鱼优化算法求解复杂函数优化问题的性能。  相似文献   

11.
针对鲸鱼优化算法(WOA)存在的收敛速度慢、收敛精度低和易陷入局部最优等问题,提出了采用非线性收敛因子、协同a的惯性权重、时变独立搜索概率和免疫记忆改进的鲸鱼优化算法(IWTWOA);应用非线性收敛因子、协同a的惯性权重和时变独立搜索概率改进WOA迭代模型,平衡了算法的全局搜索和局部搜索能力,有效避免了陷入局部最优的问题;引入免疫算法的免疫记忆机制,提高了算法收敛速度;选取了15个基准测试函数进行性能测试,结果表明IWTWOA算法在稳定性、计算精度和收敛速度上均有所提高;最终将其应用在路径规划问题中,获得了较好的结果.  相似文献   

12.
为解决大规模电动汽车无序充电对电网稳定性造成的影响,建立了电网层负荷峰谷差最小和用户层充电费用最小的两方面有序充电目标函数.为实现高效且快速的求解,对鲸鱼算法(Whale Optimization Algorithm,WOA)进行了改进,在该算法中加入两种非线性惯性权重来平衡局部搜索能力和全局搜索能力,并提出了一种教学...  相似文献   

13.
针对传统鲸鱼优化算法(WOA)不能有效处理连续型数据、邻域粗糙集对噪声数据的容错性较差等问题,文中提出基于自适应WOA和容错邻域粗糙集的特征选择算法.首先,为了避免WOA过早陷入局部最优,基于迭代周期构建分段式动态惯性权重,改进WOA的收缩包围和螺旋捕食行为,设计自适应WOA.然后,为了解决邻域粗糙集对噪声数据缺乏容错性的问题,引入邻域内相同决策特征所占的比例,定义容错邻域上下近似集、容错近似精度和近似粗糙度、容错依赖度及容错近似条件熵.最后,基于容错邻域粗糙集构造适应度函数,使用自适应WOA,不断迭代以获取最优子群.高维数据集上采用费雪评分算法进行初步降维,降低算法的时间复杂度.在8个低维UCI数据集和6个高维基因数据集上的实验表明,文中算法可有效选择特征个数较少且分类精度较高的特征子集.  相似文献   

14.
为提高粒子群优化(PSO)算法的优化性能,提出一种改进的小波变异粒子群算法(IPSOWM)。在每次迭代时以一定的概率选中粒子进行小波变异扰动,从而克服PSO算法后期易发生早熟收敛和陷入局部最优的缺点。数值仿真结果表明,IPSOWM算法的搜索精度、收敛速度及稳定性均优于PSO和PSOWM算法。  相似文献   

15.
李琰珂 《计算机时代》2010,(7):26-27,30
粒子群优化算法已经成功地应用于求解连续域问题,但是对于离散域问题的求解,尤其涉及组合优化问题的研究和应用还很少。二次分配问题本身是一个离散域问题,因此,使用粒子群算法求解二次分配问题是一个新的研究方向。文章引入交叉策略和变异策略对粒子群优化算法进行改造,使得粒子群优化算法可以用来解决二次分配问题。  相似文献   

16.
陈严  刘利民 《计算机工程》2011,37(1):170-172
运用罚函数法将约束优化问题转化为无约束优化问题,同时采用实数编码方案,将离散的车辆路径问题转化成准连续优化问题,在此基础上,用改进的粒子群优化算法求解最优值.改进的粒子群算法引入了杂交PSO模型和变异算子.仿真实验结果表明,该算法在保持粒子种群多样性、提高收敛速度和搜索精度、扩大搜索范围、避免过早收敛于局部极值点等方面...  相似文献   

17.
胡珀  娄渊胜 《计算机工程》2011,37(17):130-132
针对标准粒子群优化(PSO)算法存在收敛速度慢、容易陷入局部最优的问题,提出一个改进的PSO算法,该算法设计一种新的惯性权重,在粒子搜索的不同阶段采用不同的计算公式计算惯性权重,并引入自适应变异策略和线性变化的学习因子。实验结果表明,该算法的收敛性等性能比基本粒子群算法有明显提高,能较好地解决非线性问题。  相似文献   

18.
为了提高无人机通信网络的安全性,解决由于链路拥塞而导致的通信数据误码与丢失问题,提出基于鲸鱼优化算法的无人机通信网络链路拥塞控制方法。采用NetFlow技术获取无人机通信链路实时运行数据,度量链路利用率等指标,识别当前网络链路的拥塞状态。模拟无人机通信与链路拥塞过程,综合考虑无人机通信直视径、反射径和散射径三个分量,构建网络链路模型。在无人机通信网络链路拥塞控制协议的约束下,均衡调度无人机通信数据,利用鲸鱼优化算法选择通信链路的最优解,完成通信链路切换工作,实现无人机通信网络链路的拥塞控制任务。实验结果表明:在设计方法控制下,无人机通信网络链路的时延减小了61s,吞吐率提升135kbit/s,证明优化方法能够有效缓解链路的拥塞程度,通过对通信网络误码率和溢出丢包率的分析,证明优化控制方法不会对网络的通信任务产生明显影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号