首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通信延时环境下异质网联车辆队列非线性纵向控制   总被引:1,自引:0,他引:1  
李永福  何昌鹏  朱浩  郑太雄 《自动化学报》2021,47(12):2841-2856
针对通信延时环境下的异质车辆队列控制问题, 本文提出了一种基于三阶模型的分布式非线性车辆队列纵向控制器. 首先, 基于三阶动力学模型描述了车辆的异质特性. 考虑车辆跟驰行为以及异质通信延时, 提出一种通信延时环境下的异质车辆队列非线性控制器. 所提控制器不仅可以在通信延时以及车辆异质特性的影响下实现队列中车辆的位置、速度以及加速度的一致性, 而且可以有效避免负的车辆间距和不合理的加/减速度, 保证车辆的运动行为符合交通流理论. 然后, 利用Lyapunov-Krasovskii定理对车辆队列的稳定性进行分析, 得出车辆队列的稳定性条件和通信延时上界. 最后, 所提控制器的有效性和稳定性通过数值仿真得到验证.  相似文献   

2.
车辆队列在提高驾驶安全性、提升交通流量、改善燃油经济性方面具有巨大潜力,但现有研究多针对完全由智能网联车辆组成的队列,难以适用于现实中的混合交通环境.为此,文章研究了人工驾驶车辆与智能网联车辆的混合队列协同控制方法,在智能网联车辆控制设计中引入后车信息,并分析了其对队列稳定性、跟踪性能、燃油经济性的影响.首先构建了一种...  相似文献   

3.
针对由于复杂多变的环境因素造成的无线通信系统通信中断的智能网联车辆队列控制问题,提出一种基于组合间距策略的分布式纵向车辆队列控制器.首先,通过嵌入固定间距策略、固定时距策略和可变时距策略进行组合来应对由于领导车或跟随车通信中断的特殊情况,并考虑队列通信中断后建立新的通信拓扑结构.然后,基于三阶非线性动力学车辆模型,考虑相邻车辆间的加速度误差以及组合间距策略开发一种新型车辆队列控制器.利用Lyapunov-Krasovskii定理推导出车辆队列的渐近稳定性条件.同时,通过使用无穷范数方法验证串稳定性.最后,通过Matlab数值仿真和Simulink&PreScan联合仿真验证所提出控制器的有效性和稳定性.仿真结果表明,基于组合间距策略的车辆队列能够应对不同场景满足不同的间距需求.  相似文献   

4.
智能网联汽车的发展是将来智能交通系统中的一个重要方向,受基础设施条件以及试验成本的限制,目前的测试验证仍以计算机仿真为主。针对现有仿真软件难以满足智能网联汽车测试需求的问题,以开源软件PLEXE为基础,通过对其道路交通模拟器中的车辆动力学模型、通信拓扑结构以及车辆队列控制器等关键模块进行二次开发,设计了面向智能网联汽车队列控制研究的可视化仿真平台,对变车距队列控制算法进行仿真验证。仿真结果表明:上述平台可完成队列控制的可视化仿真,相比其它软件更加直观形象。  相似文献   

5.
针对智能网联车辆轨迹跟踪问题, 本文通过考虑车辆跟驰作用和车车通信过程中存在的通信时延, 提出了一种分布式非线性轨迹跟踪控制器. 具体来讲, 首先, 提出一种双向领导跟随通信拓扑来描述智能网联环境下车辆间的通信连接. 其次, 考虑车辆跟驰作用和通信时延, 设计一种分布式非线性轨迹跟踪控制器. 然后, 使用Lyapunov方法证明了所设计控制器的稳定性. 最后, 考虑速度干扰作用于领导者车辆, 针对无时延、同质时延和异质时延等三种场景进行数值仿真实验. 仿真结果表明: 本文所设计的控制器不仅保证了车辆位置跟踪误差收敛到原点, 而且车辆运动规律符合交通流理论, 即无负位置跟踪误差和负速度现象.  相似文献   

6.
针对智能车辆队列横纵向控制及误差快速收敛问题,本文提出一种分布式横纵向有限时间滑模控制策略.首先,考虑跟踪误差的连锁反应及横纵向耦合效应,利用投影变换建立车辆队列横纵向误差模型,提出一种车辆队列横纵向控制框架.而后,针对误差快速收敛问题,设计非奇异积分终端滑模面(NITSM)与自适应幂次积分趋近律(APIRL),通过构...  相似文献   

7.
针对含有未知扰动和模型不确定的网联车辆预设性能队列控制问题,本文提出了一种基于改进滑模的有限时间队列控制方法.首先,为满足预设性能,设计了一种新型性能函数,保证了跟踪误差在预设时间内收敛到规定区域.其次,提出了一种改进的滑模队列控制算法,加快了系统收敛速度,实现了有限时间单车稳定及队列稳定,同时,设计了自适应律,有效解决了扰动及模型不确定问题.最后,进行了MATLAB仿真实验,通过6辆网联车的队列控制仿真验证了所提算法的有效性.  相似文献   

8.
针对马尔科夫链通信拓扑下的车辆队列控制问题,综合考虑车辆队列的非线性动力学模型和行驶能耗优化目标,提出一种基于分布式状态观测器的车辆队列能耗优化控制方法.由于在马尔科夫链通信拓扑下,部分车辆获取的邻居车辆信息具有动态切换特性,严重影响了车辆队列控制算法的有效性和稳定性.鉴于此,首先,设计一种用于估计领航车辆状态信息的状态观测器,有效避免通讯拓扑切换对队列控制系统造成的干扰;然后,结合车辆的非线性动力学模型与队列优化目标,构建一种基于指数折扣函数的车辆队列能耗优化框架,将车辆队列的能耗优化问题转化为Riccati方程的求解问题,进而得到车辆队列的最优能耗控制输入,在此基础上,通过构造动态通信拓扑下的李雅普诺夫函数,分析车辆队列控制系统的稳定性条件,即只要每个可能的通信拓扑均需包含一个以领航车辆为根的有向生成树,就可使得该车辆队列控制系统满足稳定性和队列稳定性;最后,通过数值仿真验证所提出控制算法的可行性和有效性.  相似文献   

9.
针对车辆队列中多目标控制优化问题,研究基于强化学习的车辆队列控制方法.控制器输入为队列各车辆状态信息以及车辆间状态误差,输出为基于车辆纵向动力学的期望加速度,实现在V2X通信下的队列单车稳定行驶和队列稳定行驶.根据队列行驶场景以及采用的间距策略、通信拓扑结构等特性,建立队列马尔科夫决策过程(Markov decision process,MDP)模型.同时根据队列多输入-多输出高维样本特性,引入优先经验回放策略,提高算法收敛效率.为贴近实际车辆队列行驶工况,仿真基于PreScan构建多自由度燃油车动力学模型,联合Matlab/ Simulink搭建仿真环境,同时引入噪声对队列控制器中动作网络和评价网络进行训练.仿真结果表明基于强化学习的车辆队列控制燃油消耗更低,且控制器实时性更高,对车辆的控制更为平滑.  相似文献   

10.
考虑通信拓扑切换下异质非线性车辆队列系统协同控制问题,提出一种能够保证车辆队列稳定和弦稳定的分布式模型预测控制策略.先结合车辆队列动态通信拓扑切换过程,构建与时间相关的图函数,再利用邻居车辆状态信息描述平均协同代价函数,并将其引入局部滚动时域优化控制问题.进一步,应用平均停留时间概念和切换系统Lyapunov稳定性理论...  相似文献   

11.
针对快速路匝道入口场景在高车流量的情况下容易发生交通拥堵的问题,提出了一种快速路匝道入口智能网联车(connected and automated vehicles, CAV)协同合并控制的解决方案,将问题解耦成多车顺序决策和车辆运动规划两部分。其中多车顺序决策对通行效率起到重要作用,因此设计了一种基于状态评价模型(state evaluation model, SEM)的多车顺序决策算法。该算法首先建立状态空间并初始化,考虑通行效率和车辆延迟设计状态评价函数,通过状态转移关系选择出最优状态,最终回溯得到最优通行顺序。根据车辆状态和到达冲突点时间,控制器实时推导各车辆纵向速度的解析解,实现车辆运动规划。仿真和实验结果表明,该方案在满足交通系统实时性要求的同时能有效提高快速路匝道入口的通行效率,缩短车辆延迟,降低燃油消耗。  相似文献   

12.
传感器测量误差对车辆队列的有效控制与稳定性造成了较大的影响;通常情况下,大多研究成果将传感器测量误差设定为分布规律已知的随机数列(如高斯分布,泊松分布等),以便采用特定的数理方法消除误差影响;然而对于控制系统中仅满足有界条件的测量误差,仍需开展进一步的深入研究;针对此类现状,以非线性车辆队列控制为研究对象,综合考虑车载传感器的有界测量误差与车辆之间的有向通信拓扑,设计一种基于滑模的车辆队列控制方法;该方法能有效解决有界传感器测量误差下的车辆队列控制问题;此外,在控制过程中利用预设性能控制(PPC,prescribed performance control)理论,进一步约束车辆队列跟踪误差,确保车辆队列的队列稳定性;最后,通过数值仿真的方式验证本文所提出控制算法的有效性和可行性。  相似文献   

13.
曹凯  于少伟  唐进君 《计算机应用》2007,27(12):3112-3115
车辆的横向控制是智能交通中智能车辆自主导航技术的关键技术。在总结以往研究成果的基础上,提出了动态目标位置概念,以便更加真实地描述车道变换的特性;为了减少模糊控制器的规则数量,实现实时控制的目的,采用了分层模糊控制的控制器设计方案;在车辆的横向控制中,以三次样条曲线作为车道变换的路径拟合曲线,较为灵活地表现了车道变换的特性。仿真结果表明,被控车辆能够沿着虚拟的路线平滑地变换车道,较为理想地模拟实际交通环境中车辆横向运动的特性。  相似文献   

14.
针对网联车队列系统易受到干扰和拒绝服务(Denial of service, DoS)攻击问题, 提出一种外部干扰和随机DoS攻击作用下的网联车安全H∞ 队列控制方法. 首先, 采用马尔科夫随机过程, 将网联车随机DoS攻击特性建模为一个随机通信拓扑切换模型, 据此设计网联车安全队列控制协议. 然后, 采用线性矩阵不等式(Linear matrix inequality, LMI)技术计算安全队列控制器参数, 并应用Lyapunov-Krasovskii稳定性理论, 建立在外部扰动和随机DoS攻击下队列系统稳定性充分条件. 在此基础上, 分析得到该队列闭环系统的弦稳定性充分条件. 最后, 通过7辆车组成的队列系统对比仿真实验, 验证该方法的优越性.  相似文献   

15.
为了优化车辆队列在长距离行驶过程中的能源消耗,对空气流动阻力下车辆队列能耗优化间距策略以及相应的队列控制方法进行了研究;首先根据车辆队列在行驶过程中受到的空气流动阻力,建立基于异构风阻系数的车辆动力学模型;其次,设计基于滑模控制的非线性车辆队列控制方法,使其能够在不同风阻系数下稳定地收敛到期望的车辆队列;在此基础上,构建稳态下车辆队列能量消耗评价模型,并通过优化分析,计算能量消耗最优下的车辆队列期望车间距;最后通过数值仿真的手段验证所提控制方法的有效性与可行性;该结果表明:所设计的控制器能够使整个车辆队列达到期望的控制效果;得到的最优车间距能够使得特定条件下车辆队列稳态能量消耗降低。  相似文献   

16.
宋秀兰  陈雨  陈新  魏定杰  何德峰 《控制与决策》2023,38(10):2888-2896
考虑网联车辆队列在路段通信资源受限下的协同自适应巡航控制(CACC)问题,提出一种联合通信资源分配的网联车辆协同自适应巡航时滞反馈控制方法.首先,在头车-前车跟随的通信拓扑结构下,通过网联车辆队列中各车辆间的通信链路数量、该路段可使用的通信资源和当前时刻车辆间的间距误差建立二分图,根据车辆间的间距误差来调度有限的通信资源,将通信资源合理分配给有较大间距误差的跟随车辆;其次,利用非对称PD控制协议和网联车辆队列时滞纵向模型,应用线性矩阵不等式技术计算网联车CACC控制器,进一步得到车辆队列弦稳定性的充分条件;最后,通过Matlab/CarSim联合仿真验证该方法的有效性.  相似文献   

17.
智能网联车之间的拓扑快速变化导致车间链路质量不稳定,从而使得数据转发的效率降低。对此,本文面向城市路网提出一种基于路段实时评分的智能网联车数据转发模型(Road section scoring-based data forwarding model for intelligent connected vehicles,RSSM)。首先,根据车辆密度将路段分为两部分,并分别对两部分路段上节点间的连通性进行建模,之后得到整条路段上节点间的连通性作为该路段的得分。然后,计算整个路网中所有路段上节点间的连通性并将其作为上述路段的得分,依据整个路网对路段的评分实现源节点到目的节点的动态路径规划,保障所规划的数据转发在整体上最优。最后,在结合实验平台NS3与SUMO上进行仿真对比,实验结果表明:与同类算法相比,本文提出的数据转发模型RSSM在数据投递成功率和时延方面均优于同类数据转发方法。  相似文献   

18.
针对高速公路智能网联卡车队列的能耗优化问题,提出了一种基于模型预测控制的双层控制算法。算法由速度规划层和跟踪控制层两部分构成,其中速度规划层结合道路坡度及车辆状态,通过线性能量守恒模型来消除动力学模型中的非线性项,并以发动机输出功率作为油耗优化指标,采用线性模型预测控制方法获得车队的规划速度;为减少简化车队模型引起的不确定性,跟踪控制层采用基于线性矩阵不等式的分布式鲁棒模型预测控制算法,设计状态反馈控制器对上层规划的最优速度进行跟踪。仿真结果验证了上述双层控制算法的可行性和有效性,可以在保证最优能耗控制的前提下实现车队安全稳定行驶。  相似文献   

19.
智能通信信息队列加密传输系统在应用过程中存在加密传输效率低的问题,为此,提出大数据下智能通信信息队列加密传输系统设计。硬件部分,设计计算机,拥有数据处理及数据融合两个选项;设计计算机电子干扰器,依据电子对抗原理利用干扰器阻断携带机密信息的辐射电磁;设计加密IC卡,采用3DES加密标准;设计显示器,传输智能通信信息队列数据。软件部分,计算加密传输入口参数,标识出不同IP接口信号,结合数据与密钥,提高传输安全性;利用大数据下的智能通信信息队列加密传输算法,实现大数据下的智能通信信息队列加密传输。根据实验得出结论:该系统加密传输吞吐率均在3 kbit/s以上,加密传输性能较好。  相似文献   

20.
为应对通信过程存在的扰动以及减少自主车辆队列控制中的信息冗余、资源浪费,提出了一种基于事件触发机制的自主车辆队列协同控制算法,保证自主车辆队列的稳定运行。首先,针对有向通信拓扑结构下的自主车辆队列设计基于事件触发机制的协同控制算法,即使存在扰动约束,自主车辆也可以在该算法的控制下有效跟随领航车辆的速度,且与相邻车辆保持期望的安全距离。其次,通过设计Lyapunov函数以及分析Zeno行为,证明算法的有效性和安全性。最后,通过MATLAB仿真验证了控制算法的正确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号