共查询到17条相似文献,搜索用时 62 毫秒
1.
研究基于云平台的状态检测与故障诊断系统方案,提出基于NETWORX和DJANGO双软件架构的策略,以解决监控评价和故障诊断网络融合的问题及实现监控多台设备的目的。设计以PLC为核心的现场控制系统;NETWORX架构可以方便与各种物联网采集系统交换数据,所以用NETWORX架构实现云平台的远程监控程序;采用Python的DJANGO设计状态检测和故障诊断程序。结果表明:所提系统特征参数的采集精度在1%范围内,控制及显示监控功能都符合设计要求。利用经验故障数据对分类回归故障树(CART)、SVM、MLP 3种常见的故障诊断智能算法进行比较。结果表明:CART算法、SVM算法、MLP算法的故障诊断正确率分别为91.3%、73.2%、86.2%,证明基于云平台的锻压机床状态监测与故障诊断系统能够满足设计需要。 相似文献
2.
针对齿轮箱故障诊断需要大量专家经验知识、人工提取特征困难的问题,提出基于特征差异性学习卷积神经网络(FDLCNN)的故障诊断方法。构建不同深度的多尺度网络,并引入残差模块,以提升网络的特征提取能力;提取一维时序信号中不同尺度不同深度的故障特征,再通过自适应平均池化层处理后进行特征融合,以丰富智能诊断决策信息;最后在全连接层实现特征降维,使用Softmax分类器输出诊断结果。利用10种齿轮箱故障状态实验数据与现有3种方法进行对比分析,结果表明:FDLCNN故障识别精度更高,鲁棒性更强,收敛速度更快。 相似文献
3.
4.
旋转机械振动信号具有较强的非线性、非平稳性的特点,互补集合经验模态分解(CEEMD)克服了传统EEMD的缺陷,提供了对信号从粗到精不同尺度的刻画。针对不同尺度对故障特性描述的差异,提出一种基于多尺度加权CEEMD的一维卷积神经网络(1DCNN)故障诊断方法。利用互补集合经验模态将振动信号分解成一系列本征模态函数(IMFs),然后求取各个IMF分量的峭度值,计算各分量峭度所占权重,根据各个分量权重值对信号进行重构。将数据样本划分为训练集、验证集和测试集,将训练集输入到一维卷积神经网络中学习更新网络参数,然后用验证集进行验证得到最优诊断模型,最后利用测试集对诊断模型进行测试。通过电机轴承数据集和齿轮箱数据集两组实验进行了模型验证,诊断精度分别为99.98%和99.73%,表明所提方法能够快速准确地诊断出不同故障类型,并且具有较高的故障诊断准确率和鲁棒性。 相似文献
5.
针对现有研究轴承单一故障较多而研究复杂多故障较少的不足,结合卷积神经网络自动提取特征的特性,文章提出较为先进的无需人工提取故障特征的端到端深度卷积神经网络方法进行轴承多故障诊断。与基于人工提取故障特征的神经网络故障诊断方法相比较,该方法提高了轴承多故障诊断的精度,并有效区分故障发生位置,可为工业应用提供可靠的理论实验依据。 相似文献
6.
针对滚动轴承故障诊断过程中因采集数据不平衡而导致诊断精度下降的问题开展研究。面向原始一维振动信号多尺度复杂性的特点,提出一种基于多尺度代价敏感卷积神经网络的不平衡故障诊断方法。构建串并联结构的多尺度一维卷积特征提取层,通过设计不同卷积层的连接方式和选取不同的卷积核大小实现多特征提取;利用注意力机制自适应设置Adacost代价敏感损失函数的代价矩阵,实现权重的自适应分配。通过在多种不平衡比率的西储大学轴承数据集上的实验表明:该方法能有效提升模型在不同不平衡数据集中的分类性能,且具有更强的泛化能力。 相似文献
7.
8.
9.
针对旋转机械故障率偏高,而人工参与故障诊断工作量大、效率偏低等问题,提出一种基于云模型与LSTM算法的旋转机械故障诊断方法。采用实验台采集振动故障原始数据,统一进行EEMD数据预处理,利用云模型进行故障特征数据提取,输入LSTM神经网络模型进行故障诊断。通过云模型和能量法进行特征提取,分别输入支持向量机和LSTM神经网络模型进行诊断结果对比。结果表明:云模型与LSTM算法的故障诊断准确率最高,达到98.75%,证明该方法能够有效应用在旋转机械故障诊断中。 相似文献
10.
针对目前已有的电机轴承故障诊断算法对于人工干预和专家经验的依赖,以及故障诊断工作的复杂度逐渐的提高。文章提出了基于深度学习中卷积神经网络的故障诊断算法,使用原始振动数据作为网络模型的输入对其进行训练以发挥其强大的自学习能力。根据振动数据的特点和实验对比选择模型的结构和参数,进而通过深层次网络结构的卷积操作以实现对原始振动数据的特征提取,最终在输出端利用Softmax分类器输出分类结果。通过实验验证表明,该方法对于轴承故障分类准确率能够达到99.8%,对比其他方法具有很好的分类效果。 相似文献
11.
通过对基于Linux的旋转机械状态监测系统的设计描述,尤其是对Linux在现场工作站具体应用的说明,提出了在状态监测领域应用Linux的方法和思路。 相似文献
12.
针对滚动轴承振动信号典型非平稳性、非线性的特点,提出一种基于小波变换(WT)和一维卷积神经网络(1DCNN)的轴承故障诊断多尺度卷积神经网络方法。通过小波变换对信号进行多尺度分解,然后对每个尺度成分进行重构,将重构后的信号进行傅里叶变换得到频谱表示,并将各尺度幅值数据构造成一维特征向量作为一维卷积神经网络的输入。最后利用一维卷积神经网络对输入数据进行特征学习,得到轴承故障诊断模型。利用滚动轴承的10个状态数据集验证其性能。结果表明:该方法可以避免人工提取特征,获得99.94%的诊断准确率。 相似文献
13.
14.
15.
状态监测与故障诊断中的主元分析法 总被引:1,自引:0,他引:1
主元分析是基于多元统计分析的状态监测与故障诊断手段.利用主元分析法,可以在保留原有数据信息特征的基础上,消除变量关联和部分系统干扰,简化分析的复杂程度.本文分析了主元分析法及基于主元分析法的应用,提出了发展趋势是将结合其它算法的改进的主元分析法应用于状态监测与故障诊断中. 相似文献
16.