首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的基于灰色系统理论预测模型建立涂层腐蚀寿命的预测模型,利用该模型计算不同厚度的无溶剂环氧煤焦沥青涂层在滨海氯盐土模拟液中的涂层寿命。方法采用电化学方法,测定不同厚度无溶剂环氧煤焦沥青涂层涂覆的碳钢在滨海氯盐土模拟液中的交流阻抗值。基于灰色系统理论GM(1,1)模型将滨海氯盐土模拟液中测试的无溶剂环氧煤焦沥青涂料的低频阻抗模值和浸渍时间关系,建立涂层腐蚀寿命的预测模型。结果三种不同厚度无溶剂环氧煤焦沥涂层试样在侵蚀性溶液中浸泡240 d时,低频阻抗模值仍保持在8.3×10~8Ω·cm~2以上,应用预测公式计算的滨海氯盐土模拟液中三种无溶剂环氧煤焦沥涂层低频阻抗模值的实测值与预测值的相对误差小于6.0%,C0.35,P=1,该模型的预测精度好。涂层厚度为200μm的无溶剂环氧煤焦沥青层预测寿命t=781 d,涂层从浸泡初期阶段进入中期阶段。随着涂层厚度的增加,涂层寿命愈长,当涂层厚度为600μm时,其预测寿命达到2926 d。结论所建涂层腐蚀寿命的预测模型表现出较好的拟合精度和预测可靠度。  相似文献   

2.
通过电化学阻抗技术研究了环氧防锈底漆/环氧云铁中间漆/丙烯酸聚氨酯面漆 (P1) 和环氧防锈底漆/氯化橡胶面漆 (P2) 两种复合涂层体系在60 ℃,3.5%NaCl溶液中恒温浸泡失效过程,得到不同浸泡时期的电化学阻抗谱,分析了电化学阻抗谱中Bode图,涂层电阻,高频电容及特征频率的变化特征.结果表明:在浸泡初期,复合涂层体系低频阻抗值和涂层电阻下降较快,而后下降速率减缓,浸泡中期出现小幅度波动现象;高频电容和特征频率前期增大缓慢,后期增大速率加快,浸泡中期出现小幅度波动.  相似文献   

3.
以Ti粉为填料,利用电化学交流阻抗技术研究了浸泡时间对含量不同Ti粉的聚酰胺固化的环氧煤焦沥青涂层电阻的影响,初步探讨了影响涂层电阻变化的因素,并且通过计算涂层的介电常数来解释涂层电阻随浸泡时间的变化。结果表明含钛粉的环氧煤焦沥青涂层在3.5% NaCl水溶液中浸泡0.5 h,涂层的电阻随涂层中Ti粉含量的增加而减小;涂层电阻的大小顺序随浸泡时间的延长而不断发生变化,192 h后涂层的电阻随涂层中钛粉含量的增加而增大。  相似文献   

4.
采用电化学方法研究了两种常用涂层-环氧沥青涂层和环氧铝粉涂层在3.5%NaCl溶液中的腐蚀行为.腐蚀电位-时间结果表明,两种涂层的自腐蚀电位都比基体的更正,都能起到屏蔽作用保护基体,浸泡中电位向负方向移动说明活化腐蚀过程在继续.电化学阻抗结果表明,腐蚀介质能够较快的渗入涂层到达界面,使涂层的屏蔽作用降低,生成的腐蚀产物可在一定程度上抑制腐蚀的发展.并提出了两种涂层的等效电路模型,对阻抗结果进行了拟合.表明在浸泡初期涂层电阻随浸泡时间延长迅速降低,随后趋于稳定.指出电化学方法能获得与涂层性能有关的定量数据,非常适合于研究涂层/基体的性能.  相似文献   

5.
采用环氧富锌涂料作为底漆,环氧煤沥青重防腐涂料作为面漆,研究了该涂层体系在原油罐底沉积液中失效过程的电化学阻抗谱(EIS)的变化,并提出相应腐蚀阶段的等效电路,讨论了阻抗谱的特征变化与涂层体系结构及性能变化的关系。结果表明,从EIS特征可以反映出涂层体系所处的腐蚀阶段,提出的判断方法可为罐底防腐蚀涂层的失效研究和维修维护提供参考。  相似文献   

6.
何毅  海鹏  李飞洋  何杨 《腐蚀与防护》2013,(7):590-592,634
研究了多壁碳纳米管(multiwalled carbon nanotubes,MWCNTS)在环氧涂层中的分散性对涂层耐蚀性能的影响。采用电化学阻抗谱对未添加任何填料的环氧涂层、添加原始MWCNTS的环氧涂层和添加改性MWCNTS的环氧涂层等三种涂层体系进行了耐蚀性评价。结果表明,随着在电解质溶液中浸泡时间的延长,三种涂层体系的阻抗值都降低,对比涂层阻抗谱变化以及失效时间,添加改性MWCNTS的环氧涂层体系耐蚀性最佳。  相似文献   

7.
LY12铝合金环氧涂层在NaCl溶液中的吸水与失效   总被引:5,自引:0,他引:5  
对LY12铝合金/环氧电极在NaCl溶液中于不同浸泡阶段的阻抗参数进行了解析.根据涂层电容值(Cc)随时间的变化看出涂层中水的扩散是通过“两段吸收”来进行的,通过浸泡初期lnCc-t0.5曲线上的线性段求得了水在涂层中的表观扩散系数值.根据电化学阻抗谱中Cl-参与成膜阻抗出现时间求得Cl-在环氧涂层中的扩散系数值为4.67×10~(-12)·cm2s-1.受涂层吸水的影响,涂层电容上升与涂层电阻下降主要发生在浸泡初期,而涂层电极开路电位(Eoc)值的变化贯穿整个浸泡过程.开路电位值经历4个变化阶段:在前期Eoc急剧上升,随后上升速度变缓,在中后期Eoc上升速率再次增大,在浸泡后期Eoc值开始下降,金属基体发生活化,涂层失效.实验表明,含Cl-盐膜的形成、生长及溶解等过程与Eoc间存在密切关系,在LY12铝合金/环氧体系的失效过程中起到关键作用.  相似文献   

8.
采用电化学阻抗谱技术(EIS)研究了环氧铝粉涂层和FEVE氟碳涂层/碳钢体系在天然海水介质中的电化学腐蚀行为,通过对两涂层的涂层电容分析及腐蚀后表面形貌的观察,评价了两种有机涂层的防腐蚀性能。结果表明,随着浸泡时间的延长,两种有机涂层体系的保护作用都有所降低。环氧铝粉涂层在浸泡初期呈现单容抗弧特征,浸泡57天时出现了双容抗弧。氟碳涂层在浸泡周期内EIS曲线均呈现单容抗弧特征,浸泡110天时低频阻抗模值仍高于108Ω.cm2。在整个浸泡周期内,氟碳涂层的涂层电容基本维持在1.6×10-10~1.8×10-10 F.cm-2,约为环氧铝粉涂层电容的1/20,表现出低渗水性。  相似文献   

9.
    采用电化学交流阻抗(EIS)技术测量输油气管道常用外防腐层失效性的方法测量各类涂层在3%NaCl水溶液中不同时间段的阻抗图谱,分析对比相同条件其电化学参数及涂层吸水率的变化,最终对涂层在3% NaCl水溶液中失效可能性排序为:PP/PE胶带>单/双层FBE>无溶剂环氧>煤焦油瓷漆>环氧煤沥青>3PE.  相似文献   

10.
凝汽器管板和水室的防腐   总被引:1,自引:0,他引:1  
根据凝汽器水室和管板的腐蚀机理,提出用环氧煤沥青做防腐涂层。本文介绍了环氧煤沥青的主要成分、性能以及凝汽器用环氧煤沥青防腐的施工工艺及涂层质量的检测方法等。  相似文献   

11.
为提高海洋环境环氧(EP)涂层长效防腐蚀性能,选用蒙脱土(Mt)聚苯胺(PANI)复合物对环氧涂层进行改性,研究其耐蚀性能与机理。首先采用化学氧化法制备PANI和四种不同Mt含量的PANI复合物,然后以EP为成膜物质,在Q235钢上制备不同含量PANI-Mt100∶7的环氧复合涂层,通过红外光谱(FTIR),X射线衍射(XRD),扫描电镜(SEM)对PANI、PANI-Mt微观结构和形貌进行研究并利用电化学方法研究复合环氧涂层在3.5%NaCl溶液中的腐蚀性能与机理。结果表明:改性环氧涂层在浸泡0.5h和360h时的阻抗值分别为8.7×106Ω·cm~2和6.3×104Ω·cm~2,而掺入PANI-Mt100∶7后环氧涂层阻抗值明显增大,当PANI-Mt100:∶7掺入量为5%(质量分数)时,环氧涂层在浸泡0.5h和360h时的阻抗值最大,分别为2.7×108Ω·cm~2和1.1×107Ω·cm~2。  相似文献   

12.
用电化学阻抗谱(EIS)、附着力测试、Fourier红外光谱(FT-IR)和扫描电镜(SEM)等分析手段研究了环氧防腐涂层在干湿交替及全浸泡环境下的失效过程。结果表明,干湿交替环境中环氧防腐涂层前期的防护效果较好,涂层后期失效快于全浸泡环境下的失效速率;环氧防腐涂层在干湿交替环境下失效的原因是由于涂层交替的吸水和失水过程使得涂层孔隙率增大,对涂层造成机械损坏,使得涂层内部及表面开裂,最终导致附着力降低,涂层大面积起泡失效。  相似文献   

13.
用电位-电容测试和Mott-Schottky分析技术研究碳钢/环氧涂层在5%H_2SO_4溶液中腐蚀失效过程的极化及半导体行为.结果表明:碳钢/环氧涂层在5%H_2SO_4溶液中浸泡10 min时形成了一个金属-绝缘体-半导体(MIS)结构,随着浸泡时间的延长,涂层逐渐表现出半导体的性质.碳钢/环氧涂层在浸泡1 d时,涂层表现为n型半导体,Nyquist图在整个频率域内其交流阻抗出现两个半圆弧,说明此时的金属/涂层电极存在两个时间常数.碳钢/环氧涂层在浸泡3 h到5 d时,在电场作用下发生偶极极化,偶极电场阻碍了涂层中载流子的迁移,起到减缓腐蚀的作用.偶极弛豫效应使碳钢/环氧涂层电极的电容随电位绝对值的增大而减小,并且造成了其频率的依赖性.碳钢/环氧涂层在浸泡7 d以上时,碳钢与涂层形成金属-半导体接触,随着浸泡时间延长,载流子密度逐渐增加.  相似文献   

14.
铝合金表面环氧涂层中水传输行为的电化学阻抗谱研究   总被引:4,自引:0,他引:4  
研究了LYl2铝合金/环氧涂层电极在不同浓度Nacl溶液中的电化学阻抗谱(EIs),提出了涂层电极在浸泡过程中的不同阻抗模型.通过涂层电容值的变化得出环氧涂层在NaCl溶液中浸泡初期主要发生Fick扩散,中后期发生非Fick扩散.Cl-离子的存在使水的扩散系数增大,但却抑制了水与涂层组元间的相互作用,从而抑制了水的非Fick扩散过程.阻抗参数解析表明,金属/溶液界面的电化学反应阻抗主要决定于涂层中的吸水过程,后者直接决定基体/溶液界面的电化学反应面积.  相似文献   

15.
研究了铝合金/有机硅环氧涂层电极在5%NaCl(质量分数)溶液中的腐蚀电化学行为,提出了涂层体系在浸泡过程中的不同阻抗模型。结果表明,该涂层体系的作用过程可分为3个阶段:浸泡初期为涂层吸水,中期为烷氧基硅烷的水解和缩聚,后期主要为阻挡层保护。阻抗参数解析表明,涂层中硅烷的水解与缩聚增强了涂层的致密度和交联度,从而使涂层体系在浸泡过程中可实现修复和自愈(或逆损伤)。  相似文献   

16.
用电化学阻抗法 (EIS) 研究了环氧防锈涂层在实海浸泡实验及在3.5%NaCl溶液中浸泡实验和盐雾实验两种实验室模拟实验中的腐蚀失效行为,探讨了实海浸泡实验与2种实验室模拟实验的低频阻抗模值|Z |0.01 Hz之间的对应关系。结果表明:3种腐蚀环境对所研究的涂层体系的破坏作用由小到大依次为:3.5%NaCl溶液<实海浸泡<盐雾;相对实海浸泡实验,盐雾实验对环氧涂层腐蚀失效的加速因子约为2.3。  相似文献   

17.
有机涂层厚度对低碳钢腐蚀规律的影响   总被引:1,自引:0,他引:1  
采用环氧煤沥青作为涂层材料,测定了涂敷不同厚度涂层的Q235钢的交流阻抗谱。结果表明,随着涂层厚度的增加,涂层电阻和极化电阻都得到提高,涂层抗电解质溶液侵蚀能力增强,从而减缓了金属基体的腐蚀进程。  相似文献   

18.
本征态聚苯胺/环氧有机硅复合涂层的防腐性能   总被引:2,自引:1,他引:1  
目的研究本征态聚苯胺/环氧有机硅复合涂层在Na Cl溶液中对Q235低碳钢的防腐效果。方法以自制的本征态聚苯胺为防腐颜料,按比例加入填料及助剂,砂磨分散后制备质量分数为0.5%、1.0%及1.5%的本征态聚苯胺/环氧有机硅复合涂层。Q235钢板经砂纸打磨后去油除渍,采用喷涂方式涂覆制备涂层样品。利用扫描电子显微镜观察不同添加量的本征态聚苯胺在环氧有机硅涂层中的分散状态,涂层在质量分数为3.5%的Na Cl溶液浸泡不同时间,采用X射线光谱分析涂层浸泡后的物相,并通过开路电位和电化学阻抗谱对比分析涂层的耐腐蚀性能。结果本征态聚苯胺/环氧有机硅复合涂层中EB添加量(质量分数)为1.0%时,颗粒分散较均匀且能促进形成致密的氧化钝化膜,浸泡后期的涂层表面微孔电阻值较高(Rpo=3.89×106Ω·cm2),表现出良好的电化学性能;添加量(质量分数)为0.5%时颗粒分散较稀疏,涂层的阻抗值和拟合电阻值均下降;添加量(质量分数)为1.5%时涂层的阻抗值和拟合电阻值较小,腐蚀速度不断加快。结论本征态聚苯胺添加量(质量分数)为1.0%时,其在环氧有机硅涂层的分散均匀且致密,并在3.5%的Na Cl溶液中浸泡后对Q235低碳钢表现出良好的防腐效果。  相似文献   

19.
目的初步探索由聚苯胺/磷酸锌有机-无机复合钝化填料和环氧-聚硅氧烷树脂制备的自修复涂层的修复和防腐性能。方法采用微区交流阻抗技术(LEIS)、扫描电子显微技术(SEM)和电化学阻抗技术(EIS),研究了聚苯胺/磷酸锌/聚硅氧烷复合涂层的防腐性能和在人工损伤部位的修复功能。结果由微区电化学阻抗和电化学阻抗测试可知,环氧-聚硅氧烷清漆具有自修复和优异的耐蚀性能;偶联剂处理的聚苯胺/磷酸锌有机-无机复合钝化填料(HCE),可显著提升环氧-聚硅氧烷涂层的自修复和耐蚀性能。当HCE的添加量为0.3%(以占环氧-聚硅氧烷涂料质量的百分比计)时,涂层的自修复和耐蚀性能最佳,缺陷部位修复后的阻抗值最大达到70 k?,是环氧-聚硅氧烷清漆的9倍。涂层阻抗值随浸泡时间的延长而增加,浸泡3750 h时,涂层阻抗值增至10~(11)?·cm~2。结论当涂层产生缺陷时,一方面聚苯胺/磷酸锌有机-无机复合填料发生氧化还原反应,生成新的氧化膜;另一方面,聚苯胺与环氧-聚硅氧烷树脂发生交联固化反应,在基体缺陷处成膜,提高了涂层的致密性;二者协同作用使HCE3涂层试样具有最佳的耐蚀性能和自修复功能。  相似文献   

20.
针对海洋大气环境下普通碳钢用复合环氧防护涂层进行制备与耐蚀性研究。通过硅烷偶联剂对玻璃鳞片改性,将改性后的玻璃鳞片加入到环氧树脂中制备玻璃鳞片/环氧涂层。通过傅里叶红外光谱仪分析玻璃鳞片结构,利用电化学阻抗谱对比研究涂层耐蚀性,并通过中性盐雾实验评判海洋环境下涂层保护性能。实验结果表明,利用增加羟基配对位的方法可成功对玻璃鳞片表面改性,且玻璃鳞片对溶液中腐蚀性介质有良好的屏蔽作用,显著提高了环氧涂层的耐腐蚀性能。30%(质量分数)玻璃鳞片改性环氧涂层浸泡648 h后阻抗模值|Z|在10~(7.6)Ω·cm~2以上,远高于普通环氧涂层阻抗。计算得到30%玻璃鳞片改性涂层中水分子的扩散系数D为2.07×10~(-11)cm~2/s,远小于普通环氧涂层的扩散系数1.9×10~(-9)cm~2/s。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号